
© 2021 Vaibhav Karve

GRAPHICAL STRUCTURE OF UNSATISFIABLE BOOLEAN
FORMULAE

BY

VAIBHAV KARVE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Nathan Dunfield, Chair
Associate Professor Anil N. Hirani, Director of Research
Professor Yuliy Baryshnikov
Assistant Professor Anush Tserunyan

Abstract

The presented research is an introduction and analysis of a novel graph de-
cision problem called graphsat. Using the tools of topology and graph
theory, this new variant builds upon the classical logic and computer science
problem of boolean satisfiability (ksat). ksat asks if there exists a truth
assignment that satisfies a given boolean formula. Our variant deals with
multi-hypergraphs instead of boolean formulae and uses truth assignments
on vertices instead of variables. This graph-theoretic picture helps us explore
and exploit patterns in unsatisfiable instances of ksat, which in turn helps
us identify minimal obstruction sets to graph satisfiability.

Historically, ksat (for k ≥ 3) was the first problem that was proven to be
NP-complete, independently by Cook [1] and Levin [2], making it central to
the study of algorithms and computational complexity. We shed new light
on ksat by analyzing graphsat.

We demonstrate that 2graphsat is in complexity class P and has a finite
obstruction set containing four simple graphs. Further, our exploration of
3graphsat gives rise to the local graph rewriting theorem, which leverages
the fact that taking a union over all possible vertex-assignments preserves
the satisfiability status of a graph. Using this theorem, we generate a list of
graph reduction rules and an incomplete list of obstructions to satisfiability
of looped-multi-hypergraphs.

A part of this research, especially the search for unsatisfiable instances of
graphsat, was carried out using computational tools. Hence, some results
are aided by a Python package specifically written to carry out computations
on multi-hypergraph instances and implement the local rewriting algorithm.
These computational steps are included in the thesis in the form of code
blocks to give a glimpse of the back-end.

ii

To my family

iii

Acknowledgments

I wish to thank my advisor and mentor, Anil Hirani, for his patience, support,
and guidance throughout this journey, for his willingness to let me do things
my way, for his research ideas, wisdom, and his mathematical expertise, and
for helping me through every small and large decision involved in this PhD
with kindness and compassion. I thank him for making me feel comfortable
and heard throughout the process. I feel lucky to have found the perfect
advisor.

I am grateful to my thesis committee members Nathan Dunfield, Anush
Tserunyan and Yuliy Baryshnikov for regular discussions on the subject, for
giving me their valuable time, and for giving me ideas whenever I seemed to
run out of them. I am grateful to Yuliy also for suggesting the problem of
studying satisfiability from the viewpoint of the underlying structure of the
sentences and for early discussions on the subject.

I am grateful to the University of Illinois Campus Research Board for
funding part of this study via the Arnold O. Beckman Award in 2019. I
am grateful to the Bourgin family for funding part of this study via the
David G. Bourgin Mathematics Fellowship in Fall 2020. I am grateful to the
Department of Mathematics, University of Illinois at Urbana-Champaign for
its support, and for funding part of this study via the Gene H. Golub Summer
Research Fellowship in Summer 2019. I would also like to thank Patryk Szuta
for setting me up on the mem.math.illinois computer cluster, which enabled
large graphsat computations that would have been otherwise impossible
on my personal machine.

While carrying out this research, a major part of my day-to-day also in-
volved teaching. My experience as a TA would not have been the same
without the support of Jennifer McNeilly and the awesome way in which she
runs the Merit Program for Emerging Scholars. She helped give meaning to
the time I spent as a teacher.

iv

I want to thank Richard Sowers and Philipp Hieronymi for leading IGL
projects that gave me research problems I could work on that were removed
from my PhD thesis. This kept me busy whenever I was stuck on graph-
sat, helped me diversify my skill set, and helped me be employable after
graduation.

I am grateful to Richard Laugesen for always keeping his door open. His
advice, encouragement and foresight has been critical at multiple junctures
in my PhD. I will always be grateful for Rick’s advise on reaching out to Anil
as a potential thesis advisor. I have had no need to second-guess that advise.

I am grateful to my friends Derrek, Simone, Emily, Ravi, Ciaran, Sungwoo,
Rishabh, Neelotpal, Madhura, Vivek, Mohit, and Akshita, for continuing to
be my friends even though I kept using my PhD progress as an excuse to not
talk to them often enough. I will need to find a new excuse now.

I would like to acknowledge the role of Emacs and especially org-mode,
which I used for writing this thesis and for keeping my research organized;
TEX and LATEX for making this research more readable; Python for enabling
lengthy computations and for giving me constant programming joy; and cof-
fee for helping me function during all of the above. I would like to denounce
the SARS-Cov-2 virus for making everything so much harder.

I wish to thank my Alma Mater, the Indian Institute of Science Education
and Research – Kolkata. It was the place where I started my mathematical
journey in 2010. IISER-K not only taught me the math, it also taught me
what kind of mathematician I want to be. In particular, I am grateful to
Saugata Bandyopadhyay (IISER-K) and Pranay Goel (IISER-P) for helping
me start my first research projects and for teaching me how to deal with the
mundane parts of day-to-day research.

This doctoral thesis is a culmination of six years of my efforts and this
effort would have been impossible without the love and support of my family.
This PhD was not a one-person job, it took an entire family to finish it. I
wish to thank my siblings Shreya and Shekhar for keeping me grounded and
for listening to me complain and bicker about anything and everything. I
am grateful to my parents Madhavi, Suresh, Anupama and Sanjay, for their
unwavering faith in my abilities – often their faith far exceeded my actual
abilities.

I wish to thank my beautiful and loving partner Sukanya for her support
and more importantly her tolerance, for helping me stay confident, sane and

v

productive, for taking care of me, and for not letting me give up during the
difficult times. Several of the mathematical ideas in this text were born from
discussions with her, and she understands graphsat almost as well as me.
She has sacrificed her time and well-being to make this thesis possible, for
which I will be eternally grateful.

vi

Table of Contents

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Overview for the non-mathematician 2

Chapter 2 Definitions and notation 5
2.1 Type theory annotations . 5
2.2 Boolean formulae . 6
2.3 Graphs . 10
2.4 Summary . 19

Chapter 3 2GraphSAT . 21
3.1 Simple Cnfs suffice . 22
3.2 Graph homeomorphisms preserve satisfiability status 24
3.3 Totally satisfiable graph families 29
3.4 Structure of graphs with two or three independent cycles . . . 30
3.5 Conclusion to our study of 2GraphSAT 37

Chapter 4 Local rewriting in graphs 40
4.1 A brief look at 3GraphSAT 40
4.2 The need for local rewriting 41
4.3 What is graph rewriting? . 41
4.4 The local rewriting theorem 43
4.5 Consequences of local graph rewriting 45
4.6 Implementation of local graph rewriting in code 45

Chapter 5 graphsat Python package 47
5.1 Overview of the package . 48
5.2 Introduction to cnf.py . 49
5.3 Types and their constructor functions 53
5.4 Basic functions . 63
5.5 Functions for simplification 66
5.6 Functions for assignment . 71
5.7 Standalone script run commands 78
5.8 Tangling . 78
5.9 Concluding remarks . 79

vii

Chapter 6 3GraphSAT and computational results 80
6.1 Standard graph disjunctions 81
6.2 Graph reduction rules . 84
6.3 Minimality of unsatisfiable hypergraphs 88
6.4 Computational results concerning mixed hypergraphs 89
6.5 Computational results concerning triangulations 90
6.6 Infinite graphsat . 97
6.7 Computational logistics . 100

Chapter 7 Conclusion . 102
7.1 Key results from this work . 102
7.2 Future directions . 104

References . 107

Appendix: List of known unsatisfiable hypergraphs 109

viii

Chapter 1

Introduction

The presented research is an introduction and analysis of a novel graph de-
cision problem called graphsat. Using the tools of topology and graph
theory, this new variant builds upon the classical logic and computer science
problem of boolean satisfiability (ksat). ksat asks if there exists a truth
assignment that satisfies a given boolean formula. Our variant deals with
multi-hypergraphs instead of boolean formulae and uses truth assignments
on vertices instead of variables. This graph-theoretic picture helps us explore
and exploit patterns in unsatisfiable instances of ksat, which in turn helps
us identify minimal obstruction sets to graph satisfiability (see Figure 6.1
and Appendix).

Historically, ksat (for k ≥ 3) was the first problem that was proven to be
NP-complete, independently by Cook [1] and Levin [2], making it central to
the study of algorithms and computational complexity. We shed new light
on ksat by analyzing graphsat.

A part of this research, especially the search for unsatisfiable instances of
graphsat, was carried out using computational tools. Hence, a part of the
results are in the form of a Python package specifically written to handle
multi-hypergraph instances and local rewriting of graphs. These computa-
tional steps are included in the thesis in the form of code blocks to give a
glimpse of the back-end.

1.1 Overview

Following paragraphs give an overview of this thesis. This chapter also in-
cludes an overview for the non-mathematician in §1.2.

Chapter 2 introduces definitions and notations used in this thesis. It in-
troduces some type-theoretic notation that streamlines the mathematical ex-

1

position. It also includes definitions for the two halves of graphsat, i.e.
boolean formulae and graphs.

Chapter 3 is a discussion of graphsat restricted to multi-graphs and
2Cnfs. The key result in this chapter is a proof that graph homeomorphisms
preserve satisfiability statuses. It also includes a complete set of minimal
unsatisfiable simple graphs.

Chapter 4 describes the mathematical underpinnings for our analysis of
3GraphSAT. We state and prove the local graph rewriting theorem, that
enables rewriting of graphs at a vertex, while preserving its satisfiability
status.

Chapter 5 equips us with the computational tools necessary for carrying
out local rewriting in practice on multi-hypergraphs. This is done by in-
troducing the graphsat Python package, its constituent modules, and the
functions within them.

Chapter 6 outlines computational results surrounding 3graphsat. It in-
cludes graph reduction rules, a selection of unsatisfiable multi-hypergraphs,
and computations involving triangulations and infinite graphs, followed by a
brief section on computational logistics.

Chapter 7 provides a conclusion to this study by summarizing key results
as well as future directions and conjectures.

1.2 Overview for the non-mathematician

Presented here is the culmination of four years of research (2017–2021), on a
problem we have dubbed graphsat – a novel question that we created and
then attempted to answer using tools already known to mathematics.

graphsat is a combination of two parts – graphs and sat. Graph is the
name mathematicians use when talking about networks. When you read
“graph”, just imagine a bunch of points connected by some lines. The po-
sition of the points do not matter, neither do the lengths of the lines. For
example, the following two graphs are indistinguishable as far as a mathe-
matician is concerned –

2

The positions, lengths, shapes are merely extra details. We strip those details
away and focus on connections between points. There is a whole wide sub-
ject that studies graphs and their various properties dating back to 1736 CE.
Note: this is an old subject by scientific standards, but a young subject by
mathematical ones. Graph theory is particularly useful for describing struc-
tures, exploring patterns, and letting us focus on the essential connections in
any problem – say a problem like sat.

sat is shorthand for a problem with the much longer, formal name of
Boolean Satisfiability and a history dating back to the late 1960s. sat falls
under the purview of computer science and is the problem that underlies tech-
nologies such as artificial intelligence, automated planning and scheduling,
algorithms, cryptography, cyber-security, etc.

An over-simplified way of looking at sat is as a series of “variables” and
“conditions”. The variables are just x, y, z, etc., which can only take values
of True or False. The conditions look like –

x AND y must be True, OR y but NOT z can be False.

The conditions (or constraints) are always made of ANDs, ORs, and NOTs.
sat asks if such a system of variables and conditions has a solution i.e. can
we find True/False values that satisfy the conditions? This question crops
up everywhere in day-to-day software and algorithms applications.

sat might seem like an easy question on the surface – an obvious solution
is to simply try out all the True/False values we can think of for x, y and
z. However, the trouble is that this trial-and-error-search-all-possibilities
strategy is really inefficient when the number of variables involved routinely
runs into millions and the conditions one needs to check runs into billions.
This is exactly what makes sat interesting. Researchers have spent the
last few decades searching for better and faster strategies to either get to a
satisfying solution, or declare the problem unsatisfiable.

The success in trying to find a quick solution to sat has been mixed. The
success has been marred by two unsolved issues –

• we do not have the most efficient algorithm possible yet, and

• we are still trying to understand why an efficient algorithm is so hard
to find i.e. what makes sat so hard.

3

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

The study presented in this thesis attempts to shed new light on sat using
graph theory. We take a sat problem and turn it into a graph. Then, we
apply all the tools in the arsenal of graph theory to study sat problems
and find patterns in sat problems that have a solution (satisfiable) and sat
problems that don’t (unsatisfiable). This combination results in graphsat.

Unlike the other sciences, mathematicians traditionally do not require lab-
oratories or expensive research equipment for their studies. Math is tradi-
tionally done with pen-and-paper. However, this research was carried out in
a different style. Throughout the past four years, I frequently encountered
calculations that were hard to accomplish manually either because they were
too time-consuming, or because the calculations were too human-error-prone.
This prompted the authoring of a computer-program (a package written in
the Python programming language) called graphsat. The package lets me
delegate large calculations to a computer, making this thesis a mix of tradi-
tional pen-and-paper proofs and non-traditional computer-aided calculations.

Chapter 2 details all the definitions needed for stating and solving the
graphsat problem (we mathematicians like being hyper-precise). Chapter
3 details a simpler flavor of graphsat called 2graphsat – these results were
found in 2018 and published in 2020. Chapter 4 contains our key mathemati-
cal results and proofs, making it the densest chapter in this thesis. Chapter 5
is all about the graphsat Python package and how we translated mathemat-
ics into computer code. A basic understanding of programming languages is
required for reading this chapter. Chapter 6 outlines all the calculations we
carried out and the findings we made. If this study can be thought of as a
census of graphs that are pertinent to graphsat, then this chapter can be
considered a listing of all the candidates that this census has yielded. Lastly,
our conclusions are summarized in Chapter 7.

Did we end up solving graphsat? The honest answer is No. We learned
a lot about sat and graphsat through this study, but we now have a vast
number of unanswered questions that merit further investigation. On the
way, we proved and published some results, found some interesting and sur-
prising patterns in graphsat, authored a Python package, crashed several
computers multiple times by over-committing to certain calculations, and
completed a PhD. Our hope is that this thesis will serve as a starting point
to further studies of graphsat (and sat) in the future.

4

Chapter 2

Definitions and notation

We start by inductively defining boolean formulae in conjunctive normal form
in §2.2 and graphs (in fact multi-hypergraphs) in §2.3. We introduce a way
to view graphs as sets of Cnfs in §2.3.1. After translating Cnfs to graphs,
we also define a notion of satisfiability for graphs in §2.3.2. We also define
notation and conventions aimed at making the connection between Cnfs and
graphs more intuitive. These are summarized in Table 2.2.

2.1 Type theory annotations

Throughout this chapter, we add various annotations to our terms in order
to aid the reader in parsing and understanding the mathematics presented
herein. These annotations are inspired from the field of type theory and can
be thought of as representing the “category” or the “type” of a term.

For example, we write c : Clause = x1∨x2 to mean c is of type Clause and
is equal to x1 ∨ x2. The type annotations help with clarity without changing
the mathematical content. For this reason, we use them wherever they can
add to the exposition and avoid them wherever they might be unnecessarily
verbose.

We will use a fixed list of types in this chapter, collected in Table 2.1.
Full definitions for each type can be found in the sections that follow. Let V
denote an arbitrary type, used to parameterize the other types. Elements of
V will be called variables. For example, we define the type Cnf V to be the
type of all Cnfs on the variable set V . In practice, we will avoid mentioning
V explicitly and simply write type judgments like (x : Cnf) instead of (x :

Cnf V).
In Table 2.1, we use the notation A ≡ B to be mean that the two types

have exactly the same terms. We write A @ B to mean that A is a subtype

5

of B. This indicates that there are some extra restrictions placed on A.
For example, we have Clause @ Set Literal because every clause can also
be viewed as a set of literals. However, not every set of literals is a clause
because we require that clauses be nonempty. We also use ⊕ and × to denote
the disjoint-sum and Cartesian-product of types respectively.

Table 2.1: Summary of all the types defined and used in this chapter.

Type Relation to other types Description
Variable Variable ≡ V variables; an alias of V
Literal V Literal ≡ V ⊕ V⊕ Bool literals of variable type V

Clause V Clause @ Set Literal clauses of variable type V

Cnf V Cnf @ Set Clause Cnfs of variable type V

Assignment
V

Assignment @ Set Literal assignment of variable type V

Vertex Vertex ≡ V vertices; an alias of V
Edge V Edge @ Set Vertex hyperedges of vertex type V

Graph V Graph @ Multiset Edge multi-hypergraphs of vertex type V

Bool the type of boolean values (true and false)
N the type of natural numbers
Set V homogeneous sets of elements of type V

Multiset V Multiset V ≡ N× Set V homogeneous multi-sets of elements of type V

2.2 Boolean formulae

We inductively define variables, literals, clauses, Cnfs and assignments. We
then define satisfiability and equi-satisfiability for Cnfs.

2.2.1 Variables

We fix an arbitrary countable set and call its elements variables. Variables
will be denoted by x1, x2, y1, y2, etc. In order to save ourselves the trouble of
having to write all the xi’s we will use xi and i interchangeably. We denote
the type of variables as Variable and thus can write 2 : Variable to mean that
2 is a variable.

6

2.2.2 Literals and Booleans

A literal is either a variable, denoted by the same symbol as the variable; or
its negation, denoted by ¬i or i or -i (especially when it is written as part of
computer code). We also declare that there are two additional literals called
true (denoted by > or <Bool: TRUE>) and false (denoted by ⊥ or <Bool:

FALSE>). We denote the type of literals as Literal and can thus write 2 :

Literal to mean that 2 is a literal.
The Literal type is thus composed of two copies of V and one copy of Bool

(the type of true and false). We can therefore write Literal ≡ V ⊕ V⊕ Bool.

2.2.3 Clauses

A clause is a disjunction of one or more literals. For example, 1 ∨ 2 is a
clause. A clause made of a single literal i is also denoted by i. Moreover, we
can leave the disjunctions as implicit when writing a clause, e.g. x1 ∨x2 ∨x3

as 123. We denote the type of clauses as Clause. Thus, the following are all
valid examples of clauses

(> : Clause) (⊥ : Clause) (1 : Clause) (12 : Clause)

(<Bool: TRUE>: Clause) ((1, -2): Clause)

2.2.4 Conjunctive normal form (Cnf)

A boolean formula is said to be in conjunctive normal form (Cnf) if it is
a conjunction of one or more clauses. Instead of saying a formula is in
conjunctive normal form, we say it is a Cnf. Thus, Cnf refers to both the
property of being in this form and to the type of all such formulae. We can
write a Cnf x as,

x : Cnf = (x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4),

where xi : Variable. This can be expressed more briefly as

x : Cnf = (12) ∧ (123) ∧ (14),

7

We can further drop the parentheses, and replace the conjunctions with a
comma to produce

x : Cnf = 12, 123, 14

To avoid ambiguity in these expressions, we stipulate that the disjunctions
will always bind “tighter” than the conjunctions if no parentheses are used.
For example, 12, 3 is to be interpreted as (x1 ∨ ¬x2) ∧ x3 and not as x1 ∨
(¬x2 ∧ x3).

Since we dropped parentheses, a Cnf containing a single clause has the
same representation as the clause itself. Thus, the following are all valid
ways of writing a Cnf

(> : Cnf) (⊥ : Cnf) (1 : Cnf) (12 : Cnf) (12, 23 : Cnf)

(<Bool: TRUE>: Cnf) ((1, -2)(2, -3): Cnf) (((1, -2), (2,

-3)): Cnf)

2.2.5 Assignments

A truth assignment (or simply an assignment) is a set of literals with the
additional condition that a literal and its negation cannot both belong to an
assignment. We denote the type of assignments by Assignment. For example,

a1 : Assignment = {1, 2, 3}

is a valid assignment but,

a2 : Set Literal = {1, 2, 1}

is not, hence its type is written merely as a set of literals but not as an
assignment. We are interested in assignments only with regards with the
way they “act” upon Cnfs. Fixing a : Assignment, we define this “action”

8

with the help of the following functions parameterized by a:

fa,Literal : Literal→ Literal

l 7→ >, ∀ (l : Literal) ∈ a;

l 7→ ⊥, ∀ (l : Literal) ∈ a;

l 7→ l, ∀ (l : Literal) /∈ a.

fa,Clause : Clause→ Clause∨
i

li 7→
∨
i

fa,Literal(li), ∀ li : Literal.

fa,Cnf : Cnf→ Cnf∧
i

ci 7→
∧
i

fa,Clause(ci), ∀ ci : Clause.

Thus, fa,Cnf replaces all occurrences of a literal with > and its negation
with ⊥ while keeping everything else unchanged in a Cnf. We write x[a]

instead of fa,Cnf(x), c[a] instead of fa,Clause(c), and l[a] for fa,Literal(l). The
overloaded notation will always be disambiguated based on the types of x, c, l
etc. For example,

(
12, 123, 14 : Cnf

) [
{1, 2} : Assignment

]
=
(
>2,>23,⊥4

) [
{2}
]

(setting 1 to >)

=
(
>>,>⊥3,⊥4

)
(setting 2 to ⊥)

= (>,>, 4)

= 4 : Cnf

We simplify this notation further by writing x[1, 2] instead of x[{1, 2}].

2.2.6 Satisfiability of Cnfs

A Cnf x is satisfiable if there exists a truth assignment a such that x[a] = >.
Otherwise, x is unsatisfiable.

Two Cnfs x and y are equi-satisfiable if either they are both satisfiable or
they are both unsatisfiable. Equi-satisfiability is an equivalence relation and

9

we denote it by x ∼ y. Using this notation, we can write the phrase “x is
satisfiable” simply as x ∼ > and “x is unsatisfiable” simply as x ∼ ⊥.

For example, 12, 23 ∼ > because 12, 23[2] = >. Similarly, 12, 12, 12, 12 ∼
⊥ because there is no assignment that satisfies it.

We also introduce a map for Cnf-satisfiability denoted σ : Cnf −→ Bool,
which maps satisfiable Cnfs to True and unsatisfiable Cnfs to False.

We now prove a lemma that shows that assigning to a literal does not
change the satisfiability status of a Cnf.

Lemma 1. Let x be a Cnf and l be a literal. Assigning l in x is equisatisfiable
to introducing a new clause with the literal l, i.e. x[l] ∼ x, l.

Proof. If x, l is satisfiable, then there is an assignment a such that x, l[a] = >.
Since x, l[a] = x[a], l[a], we must have l ∈ a. We can therefore write a as a
union of its constituent parts, a = {l} ∪ a′, for some assignment a′. Since
x[a] = >, we have x[a′][l] = > and therefore, x[l] ∼ >. Thus we can conclude
that x[l] is also satisfiable.

Conversely, if x[l] is satisfiable, then there is an assignment a such that
x[l][a] = >. We also note that the assignment a does not contain l nor l. We
can therefore conclude that x[a∪{l}] = >. Therefore, (x, l)[a∪{l}] = > and
hence x, l is satisfiable.

2.3 Graphs

Let V be a countable set. Elements of the set V will be called vertices. We
will omit any mention of a specific V and simply denote elements of V using
boldface numerals 1,2, . . . : Vertex.

An edge on V is a nonempty set of vertices. We omit the surrounding
braces while denoting edges and simply write the vertices in a contiguous
fashion. For example, 12, 234, and 1 are all edges. We refer to edges of size
one, two and three as loops, simple edges and hyperedges respectively.

A graph on V is a nonempty multiset of edges on V . In literature, these are
typically referred to as multi-hypergraphs, but we simply call them graphs.
We omit the surrounding braces and separate the edges by boldface-commas.
For example,

g : Graph = 12, 123, 14.

10

If an edge repeats in a graph, we denote its multiplicity as a superscript. We
can therefore write

g′ : Graph = 12, 234, 42.

2.3.1 Graphs as sets of Cnfs

In this section we define graphs inductively starting with vertices and then
building up through edges (looped, simple and hyper) and then multi-edges.
The standard term for these graph objects would be “looped-multi-hypergraphs”.

We then define a novel way of interpreting a graph as a set of Cnfs that
can “live on that graph”. This translation of graphs into sets of Cnfs is
lies at the heart of our attempt to turn boolean satisfiability instances into
graph theory problems. Consequently, we make this translation as explicit
as possible and provide enough details so that the interested reader may
generate a translation “algorithm” from our definitions to readily turn any
graph into a set of Cnfs.

We define the functions f1, f2, f3, f4 as follows —

f1 : Vertex→ Set Literal

v 7→ {v, v}

f2 : Edge→ Set Clause

v1v2 · · · vk 7→ {l1 ∨ l2 ∨ · · · ∨ lk | (li : Literal) ∈ f1(vi)}

f3 : N× Edge→ Set Cnf

(n, e) 7→ {c1 ∧ · · · ∧ cn | (ci : Clause) ∈ f2(e) and ci 6= cj}

f4 : Graph→ Set Cnf

e1
n1, . . . , ek

nk 7→ {x1 ∧ · · · ∧ xk | (xi : Cnf) ∈ f3(ni, ei)}

The image of a graph under f4 gives us the set of all Cnfs that “live on
that graph”. We use this set often enough that we will simply omit writing
f1, f2, f3, and f4 and we will conflate the graph with its set of Cnfs. For

11

example, the following graph is also a set.

g = 12, 13 : Graph

=
{
(12, 13), (12, 13), . . . , (12, 13)

}
: Set Cnf

We further define two special sets of Cnfs, which we denote by boldface
true and false symbols —

> : Set Cnf = {(> : Cnf)}

⊥ : Set Cnf = {(⊥ : Cnf)}

Note that both of these are sets of Cnfs that are not graphs (due to the
requirement that a graph be a nonempty multiset of edges). Similarly, the
empty set is also a valid term of type Set Cnf but is not a valid term of type
Graph.

The set of Cnfs living on a graph can sometimes be empty. For example,
the following graphs are all empty

13 : Graph = ∅ : Set Cnf 125 : Graph = ∅ : Set Cnf

1239 : Graph = ∅ : Set Cnf 125, 23 : Graph = ∅ : Set Cnf

These sets are empty because their image under f3 is empty. In general, a
graph is empty if and only if it has an edge of size n with multiplicity more
than 2n.

2.3.2 Graph satisfiability

A set of Cnfs g is totally satisfiable if it is nonempty and if every Cnf in it is
satisfiable. Otherwise, it is unsatisfiable. We denote by γ : Set Cnf→ Bool,
the map that sends a Graph to> if it is totally satisfiable, and to⊥ otherwise.

The following are equivalent (as a direct consequence of the definitions):

• (g : Set Cnf) is totally satisfiable.

• γ(g) = >.

• g 6= ∅ and ∀(x : Cnf) ∈ g, x ∼ >.

12

• g 6= ∅ and ∀(x : Cnf) ∈ g, ∃(a : Assignment), x[a] ∼ >.

The following are also equivalent:

• (g : Set Cnf) is unsatisfiable.

• γ(g) = ⊥.

• g = ∅ or ∃(x : Cnf) ∈ g, x ∼ ⊥.

• g = ∅ or ∃(x : Cnf) ∈ g, ∀(a : Assignment), x[a] ∼ ⊥.

Lemma 2. For any set of Cnfs g1 and g2, we have γ(g1∪g2) = γ(g1)∧γ(g2).

Proof. We have that γ(g1∪g2) = > if and only if g1∪g2 is totally satisfiable.
This in turn is true if and only if every Cnf in g1 is satisfiable and every Cnf
in g2 is satisfiable. This in turn is true if and only if γ(g1) and γ(g2) are
both equal to >.

2.3.3 Graph equi-satisfiability

Two sets of Cnfs g1 and g2 are equi-satisfiable if they are both totally satis-
fiable or are both unsatisfiable. We write this as g1 ∼ g2. We say that g1

equi-implies g2 by the ⊥-criterion (denoted g1
⊥==⇒ g2) if,

∀(x1 : Cnf) ∈ g1, ∃(x2 : Cnf) ∈ g2, x1 ∼ ⊥ =⇒ x2 ∼ ⊥.

If both g1
⊥==⇒ g2 and g2

⊥==⇒ g1, then we denote this more compactly as

g1
⊥⇐=⇒ g2. We say that g1 equi-implies g2 by the A⊥-criterion (denoted

g1
A⊥===⇒ g2) if,

∀(x1 : Cnf) ∈ g1, ∃(x2 : Cnf) ∈ g2, ∀(a : Assignment),

x1[a] = ⊥ =⇒ x2[a] = ⊥.

If both g1
A⊥==⇒ g2 and g2

A⊥==⇒ g1, then we denote this more compactly as

g1
A⊥⇐=⇒ g2.

13

Lemma 3. For any set of Cnfs g1 and g2,

g1 ∼ g2 iff and only if γ(g1) = γ(g2).

Proof. This follows directly from the definition of γ.

We now prove a lemma that is useful when establishing that two given
graphs are equi-satisfiable.

Lemma 4. Let g1 and g2 be sets of Cnfs. Then, g1 ∼ g2 if and only if
g1

⊥⇐=⇒ g2. In other words, we can restrict our attention to only finding
unsatisfiable Cnfs in both sets in order to prove their equi-satisfiability.

Proof. Suppose that g1 ∼ g2. If both sets are totally satisfiable, then g1
⊥⇐=⇒

g2 is vacuously true. If both sets are unsatisfiable, then for every unsatis-
fiable Cnf in g1, we choose an unsatisfiable Cnf in g2. Similarly, for every
unsatisfiable Cnf in g2, we can choose a corresponding unsatisfiable Cnf in
g1, thus satisfying the requirements of the ⊥-criterion of equi-implication.

Conversely, if g1
⊥⇐=⇒ g2, then given an unsatisfiable Cnf in g1 we can

obtain an unsatisfiable Cnf in g2. Thus, either both sets are totally satisfiable
or both are unsatisfiable.

The procedure for proving equi-satisfiability of sets of Cnfs (or graphs in
particular) can be further simplified using the following lemma.

2.3.4 Disjunction and conjunction of graphs

We define disjunction for sets of Cnfs to be a binary operation f1 as

f1 : Set Cnf× Set Cnf→ Set Cnf

(s1, s2) 7→ {f2(x1 ∨ x2) | (x1 : Cnf) ∈ s1, (x2 : Cnf) ∈ s2} ,

where, f2 : Boolean-Formula→ Cnf, is a map that converts boolean formulae
into Cnfs by repeatedly using distributivity of disjunction over conjunction.
We note that this is only one of several possible “implementations” of f2. We
choose this implementation because it has the advantage of not introducing

14

any new variables. A disadvantage of this approach is that this conversion to
Cnfs can lead to an explosion in the number of resulting clauses. However, we
are concerned only with small graph instances which can be handled without
incurring a huge time penalty. We write g1 ∨ g2 instead of f1(g1, g2).

§6.1 lists tables of standard graph disjunctions that show up when per-
forming computations on small graphs.

We define conjunction for sets of Cnfs to be a binary operation f3 as

f3 : Set Cnf× Set Cnf→ Set Cnf

(s1, s2) 7→ {x1 ∧ x2 | (x1 : Cnf) ∈ s1, (x2 : Cnf) ∈ s2} .

We write g1 ∧ g2 instead of f3(g1, g2).

Lemma 5. Let g1 and g2 be sets of Cnfs. For every g : Set Cnf,

g1
A⊥===⇒ g2 implies g ∧ g1

⊥==⇒ g ∧ g2.

In other words, particularly when dealing with graphs, we can factor out the
largest common subgraph and restrict our attention to finding Cnfs on the
remaining edges in order to prove graph equi-satisfiability.

Proof. Let g be an arbitrary set of Cnfs. If either g or g1 is empty, then
g ∧ g1 is empty and the conclusion is vacuously true. Let us suppose then
that both g and g1 are nonempty. Let (x : Cnf) ∈ g and (x1 : Cnf) ∈ g1

such that x ∧ x1 ∼ ⊥. Pick (x2 : Cnf) ∈ g2 (using the hypothesis) such that
for every a : Assignment, we have x1[a] = ⊥ implies x2[a] = ⊥. We claim
that x ∧ x2 ∼ ⊥ and we will prove this by contradiction.

Suppose x∧x2 ∼ >. Then, there exists a : Assignment such that x[a] = >
and x2[a] = >. By definition of x2, we must have x1[a] = >. But then,
x ∧ x1[a] = x[a] ∧ x1[a] = > ∧ > = > contradicts our choice of x and x1.
Thus, we have proved that x ∧ x2 ∼ ⊥.

Corollary 1. Let g1 and g2 be sets of Cnfs. For every g : Set Cnf,

g1
A⊥⇐==⇒ g2 implies g ∧ g1 ∼ g ∧ g2.

Proof. The proof follows from Lemmas 4 and 5.

15

2.3.5 Consequence of graph disjunction

Lemma 6. Let g1 and g2 be graph. Then, g1 ∨ g2
A⊥==⇒ g1, and similarly,

g1 ∨ g2
A⊥==⇒ g2.

Proof. Let (x : Cnf) ∈ g1 ∨ g2. We can factor x as x = x1 ∨ x2 for some
(x1 : Cnf) and (x2 : Cnf), such that x1 ∈ g1 and x2 ∈ g2. We choose y = x1.
Then, any assignment that falsifies x falsifies both x1 and x2. In particular,
any such assignment also falsifies y.

The converse of the above lemma is also true.

Lemma 7. Let g1 and g2 be sets of Cnfs. If both g1 and g2 are unsatisfiable,
then we can conclude that g1 ∨ g2 is also unsatisfiable.

Proof. Let (x1 : Cnf) ∈ g1 and (x2 : Cnf) ∈ g2 be unsatisfiable Cnfs. Any
assignment that satisfies x1 ∨ x2 must also satisfy either x1 or x2 or both.
Hence, we can conclude that no assignment satisfies x1 ∨ x2. Since x1 ∨ x2 ∈
g1 ∨ g2, we can conclude that g1 ∨ g2 is unsatisfiable.

In the next lemmas, we show that if we take our arrows to be equi-
implications under the A⊥ criterion, then graph disjunction obeys the uni-
versal property of products, while union of Cnf sets possesses the universal
property of sums.

Lemma 8. Let g1, g2 and g be sets of Cnfs.

1. If g A⊥==⇒ g1 and g
A⊥==⇒ g2, then g

A⊥==⇒ g1 ∨ g2.

2. If g1
A⊥==⇒ g and g2

A⊥==⇒ g, then g1 ∪ g2
A⊥==⇒ g.

Proof. For 1., we note that for every (x : Cnf) ∈ g, there exist Cnfs x1 ∈ g1

and x2 ∈ g2 such that any assignment that falsifies x also falsifies both x1

and x2. Thus, any assignment that falsifies x also falsifies x1 ∨ x2.
For 2., we note that for every (x1 : Cnf) ∈ g1, there exists a Cnf x ∈ g

such that any assignment that falsifies x1 also falsifies x. This covers every
Cnf in g1∪g2 coming from g1. A similar argument hold for every Cnf coming
from g2. This proves that g1 ∪ g2

A⊥==⇒ g.

Lemma 9. Let g, g1 and g2 be sets of Cnfs. If either one of g ∧ g1 or
g ∧ g2 is totally satisfiable, then, so is g∧(g1 ∨ g2).

16

Proof. Suppose g∧(g1 ∨ g2) is unsatisfiable. Then, there exist Cnfs x ∈ g,
x1 ∈ g1, and x2 ∈ g2 such that x ∧ (x1 ∨ x2) is unsatisfiable. Then, both
x ∧ x1 ∼ ⊥ and x ∧ x2 ∼ ⊥. In other words, both g ∧ g1 and g ∧ g2 are
unsatisfiable.

2.3.6 Assignments on graphs

We now extend the notion of assignments to sets of Cnfs. For a clause or Cnf,
we defined assignments at a literal in §2.2.5. We now define assignments for a
graph at a vertex. We note that this is a completely new notion that does not
exists in graph theory and can be defined here only because of the connection
we have established between graphs and Cnfs in the previous sections.

Let v be a vertex, and g be a set of Cnfs. We define,

g[v] : Set Cnf = {x[v] ∨ x[v] | (x : Cnf) ∈ g, (v : Literal) ∈ v}

We note here that despite what the notation might suggest, x[v] is in
general not an element of g[v]. If x ∈ g, then x[v] is in fact an element of
the graph sphere(g,v)∧ link(g,v). The definitions of sphere and link can be
found in §2.3.7.

Next, we prove that assignments on graphs do not alter their satisfiability
status. This is useful because post-assignment the graphs (or sets of Cnfs)
always result in sets with Cnfs having one fewer variable, while not altering
their satisfiability status

Lemma 10. Let g be a set of Cnfs and let v be a vertex. Then, g[v] ∼ g.

Proof. The proof follows by expanding the definition of g[v].

g[v] = {x[v] ∨ x[v] | (x : Cnf) ∈ g, (v : Literal) ∈ v}

∼ {x ∧ v ∨ x ∧ v | (x : Cnf) ∈ g, (v : Literal) ∈ v}

= {x ∧ (v ∨ v) | (x : Cnf) ∈ g, (v : Literal) ∈ v}

= {x | (x : Cnf) ∈ g}

= g

17

2.3.7 Parts of a graph

We now define some parts of graphs that will be useful for stating several
subsequent lemmas. Let g be a graph and let v be a vertex. The sphere of
g at v is the set of all edges not containing v.

sphere : Graph× Vertex→ Graph

(g,v) 7→ {e : Edge | e ∈ g and v /∈ e}

The star of g at v is the set of all edges containing v.

star : Graph× Vertex→ Graph

(g,v) 7→ {e : Edge | e ∈ g and v ∈ e}

The link of g at v is the following set of edges, with (−) denoting the usual
set difference operation,

link : Graph× Vertex→ Graph

(g,v) 7→ {(e− {v}) : Edge | e ∈ star(g,v)} .

A graph g is a subgraph of a graph h if every edge of g (counting duplicates
as distinct) is also an edge of h. We denote this partial order on graphs by
g ≤ h. An edge e is a face of an edge f if every vertex in e is also in f .
A graph g is a sublink of a graph h if both graph have the same number of
edges and if every edge of g (counting duplicates as distinct) is a face of a
distinct edge in h (counting duplicates as distinct). We denote this partial
order on graphs by g � h.

We now prove some lemmas outlining the relation between subgraphs,
sublinks and satisfiability.

Lemma 11. Let g1 and g2 be graphs such that g1 ≤ g2. Then, g1
A⊥==⇒ g2.

Proof. We can write g2 = g1 ∧ g for some (g : Graph). Let (x1 : Cnf) ∈ g1.
Let (x : Cnf) ∈ g be an arbitrary Cnf in g. If (a : Assignment) is such that
x1[a] = ⊥, then we have (x1 ∧ x)[a] = x1[a] ∧ x = ⊥.

Lemma 12. Let g1 and g2 be sets of Cnfs such that g1
A⊥==⇒ g2. Then,

18

∀(g : Graph),
g ∧ g1 ∪ g ∧ g2 ∼ g ∧ g2.

Proof. It suffices to prove g1 ∪ g2
A⊥⇐=⇒ g2. To prove g1 ∪ g2

A⊥==⇒ g2, we

select for every (x1 : Cnf) ∈ g1, a Cnf x2 ∈ g2 from the proof of g1
A⊥==⇒ g2.

The reverse side is trivially true.

Lemma 13. Let e and f be edges such that e is a face of f . Then, f A⊥==⇒ e.

Proof. Let (cf : Clause) ∈ f be arbitrary. We can write cf = ce ∨ c for some
(ce : Clause) ∈ e and some (c : Clause) ∈ f \ e. Then, any assignment a

that falsifies cf necessarily falsifies ce, hence proving the result.

Lemma 14. Let g1 and g2 be graphs such that g1 � g2. Then, g2
A⊥==⇒ g1.

Proof. This follows from the previous lemma, applying the result one face at
a time.

2.4 Summary

All operators defined in the previous sections are summarized in Table 2.2.
These operators are written in increasing order of binding-tightness. The
order of binding-tightness can be used to disambiguate expressions when
multiple operators are used at the same time.

19

Table 2.2: Summary of all the operators.

Operator Context Meaning Remarks
Invisible glue between literals boolean disjunction binds tighter than

all other operators
, between clauses or Cnfs boolean conjunction also written as ∧
x1 acts on literals unary negation on literals also written as ¬x1

x[a] action of assignment on Cnf fa,Cnf(x) in §2.2.5
∼ between two Cnfs equi-satisfiable Cnfs equivalence rela-

tion
Invisible glue between vertices adjacency of vertices

en superscript for a (hyper)edge edge-multiplicity
, between edges, or graphs graph union also called the ad-

jacency of edges
∨ between two sets of Cnfs disjunction in §2.3.4
∧ between two sets of Cnfs conjunction in §2.3.4

g[v] action of vertex on a set of Cnfs assignment in §2.3.6
≤ between two graphs subgraph relation
� between two graphs sublink relation
∼ between two sets of Cnfs equi-satisfiable graphs/sets binds looser than

all other operators

20

Chapter 3

2GraphSAT

In this chapter, we focus our attention on 2graphsat, i.e. the following
decision problem –

• Instance: Given a specific multi-graph g.

• Question: Is every 2Cnf x such that x ∈ g satisfiable.

We use additional notation described below –

1. We denote the class of all looped-multi-graphs with edge size less than
or equal to 2 by MGraph and we refer to these graphs as multi graphs
(meaning “not hyper” graphs). Thus, MGraph @ Graph.

2. We denote the class of all Cnfs with clause size less than or equal to
(k : N) by kCnf. Thus, the set of Cnfs corresponding to any multi-
graph is in fact a set of 2Cnfs.

The corresponding decision problem at the level of Cnfs is well-known and
well-studied. It is called 2sat and is known to be in complexity class P.
Instead of algorithmic issues our aim in this chapter is to study the structure
of unsatisfiable instances of 2graphsat.

For completeness, we first briefly summarize the relevant fundamental al-
gorithmic results for 2sat. The 2sat problem is in P. An O(n4) algorithm
was given by Krom [3] and a linear-time algorithm by Even, Itai and Shamir
[4] and Aspvall, Plass and Tarjan [5]. All solutions of a given 2sat instance
can be listed efficiently using an algorithm by Feder [6].

In contrast to the algorithmic tractability of 2sat, the sat problem in
general is NP-complete as was shown by Cook and by Levin independently
[1], [2]. As part of the proof of the NP-completeness of sat, they also proved
that every logical sentence can be rewritten as a Cnf while changing its length
by no more than a constant factor. Schaefer’s dichotomy theorem states

21

necessary and sufficient conditions under which a finite set S of relations over
the Boolean domain yields polynomial-time or NP-complete problems when
the relations of S are used to constrain some of the propositional variables
[7]. Thus [7] gives a necessary and sufficient condition for sat-type problems
to be in P vs. NP.

graphsat transfers notions of satisfiability onto graphs. An early connec-
tion between satisfiability and graphs was in the proof of NP-completeness of
various graph problems, such as the clique decision problem and the vertex
cover problem, by Karp [8]. One of the linear-time algorithms for 2-sat [5]
mentioned above also related graphs to satisfiability in its use of strongly-
connected graph components as a tool for deciding satisfiability.

We explore the structures of unsatisfiable 2Cnfs by relating 2Cnfs to multi-
graphs and examining which multi-graphs can support unsatisfiable sen-
tences. Given a 2Cnf, an associated multi-graph can be created (as de-
scribed more formally in 2.3.1) by identifying the variables as vertices and
each clause as an edge. Since multiple clauses may involve the same two vari-
ables, the graph will in general have multi-edges. In §3.2 we prove theorems
about the set of unsatisfiable multigraphs showing that this set is closed un-
der graph homeomorphism. Theorem 11 shows that a graph can support an
unsatisfiable Cnf if one of its subgraph can. Theorem 2 shows that if a multi-
graph can support an unsatisfiable Cnfs, then the multi-graphs obtained by
edge-contractions at edges not contained in triangles can. §3.4 is about con-
nectivity properties of graphs that we need to prove the main result. The
main result of this chapter is Theorem 3 in which we give a complete charac-
terization of simple graphs that can support unsatisfiable sentences. This is
given in the form of a finite set of obstructions to supporting only satisfiable
sentences. In §3.5 we discuss how our approach differs from the application
of finite obstructions (forbidden minors) theory developed in the Robertson-
Seymour graph minor theorem published in a series of papers starting with
[9] and ending with [10].

3.1 Simple Cnfs suffice

In this section, we show that every multi-graph is equisatisfiable to a sim-
ple graph. Thus when studying satisfiability of multi-graphs, we only need

22

consider those that are simple.
First, we make the observation that for any variable a, there are at most

two length 1 clauses, namely a and a. Such clauses involving a single variable
a (or its negation) will be referred to as (a)-clauses. For every pair of variables
a, b, there are at most four length 2 clauses, namely ab, ab, ab and ab. Such
clauses involving both a and b (or their negations) will be referred to as
ab-clauses.

Lemma 15. Let a be a vertex. Let g be a multi-graph.

1. The double-loop graph a2 is unsatisfiable

2. g ∧ a ∼ sphere(g,a)∧ link(g,a).

3. If g does not have any edges incident on a, then g ∧ a ∼ g.

Proof. 1 follows from the fact that a ∧ a ∈ a2 and is an unsatisfiable Cnf.
For 2, we note that that a generic element of g ∧ a is of the form x ∧ a, for
x ∈ g. Since x ∧ a ∼ x[a], and since the x[a] ∈ sphere(g,a)∧ link(g,a), the
result follows. 3 follows from 2, since under the given hypothesis, the sphere
of g at a is g itself and the link is empty.

Lemma 16. In the following statements, let a and b be vertices, let g be a
multi-graph, let x be a Cnf and let a, b, c and d be literals.

1. The quadruple-edge multigraph (ab)4 is unsatisfiable.

2. x ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∼ x[a, b].

3. x ∧ (a ∨ b) ∧ (a ∨ b) ∼ x[a].

4. x ∧ (a ∨ b) ∧ (a ∨ b) ∼ x[b].

5. x∧ (a∨ b)∧ (a∨ b) is equisatisfiable with the Cnf obtained by replacing
every occurrence of the literal b in x with a (and b with a).

Proof. 1 follows from the fact that the set of Cnfs corresponding to ab4 has
a single unsatisfiable element.

For 2, we start with the notion that for any Cnf y and literals a and b,
we can state that y is satisfiable if and only if some assignment of a and

23

b on it is. Thus, we can write that y is satisfiable if and only if the set
{y[a, b], y[a, b], y[a, b], y[a, b]} is totally satisfiable as a set of Cnfs.

Using this result with y = x ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) tells us that
y[b] = x ∧ a ∧ a = ⊥. Thus, both y[a, b] and y[a, b] are unsatisfiable.

Similarly, y[a] and therefore y[a, b] are unsatisfiable. Thus y is satisfiable
if and only if {y[a, b]} is totally satisfiable. We can restate this as y ∼ y[a, b].
Thus 2 follows.

For 3, let y = x∧(a∨b)∧(a∨b). Since (a∨b)∧(a∨b)→ a, any assignment
A that satisfies y must contain the literal a (i.e. it must set a to true). Thus,
A must also satisfy x[a]. Conversely, consider an assignment A′ that satisfies
x[a]. The assignment A′ ∪ {a} satisfies y. We conclude that y ∼ x[a].

Let y = x ∧ (a ∨ b) ∧ (a ∨ b). Since (a ∨ b) ∧ (a ∨ b) → b, by a similar
reasoning to the previous case, we conclude that y ∼ x[b].

Lastly, let y = x ∧ (a ∨ b) ∧ (a ∨ b). Any assignment A that satisfies y

must map a and b to opposite booleans in order to satisfy the two (a, b)-
clauses. Thus, such a truth assignment must also satisfy the Cnf resulting
from replacing b with a in x. Conversely, consider an assignment A′ that
satisfies the Cnf obtained by replacing b by a in x. If a ∈ A′, add b to A′,
else add b to A′. Then the resultant assignment must satisfy y. Thus, we
have proven 5.

From Lemmas 15 and 16, we conclude that any Cnf whose corresponding
multi-graph might contain a multi-loop, or a multi-edge can be replaced by a
smaller, equisatisfiable Cnf not containing the multi-loops and multi-edges.
Thus we can safely restrict our attention to only Cnfs whose corresponding
multi-graphs are simple.

3.2 Graph homeomorphisms preserve satisfiability
status

Edge-contraction at an edge ab of a graph results in a graph in which the
vertices a and b are merged into a single new vertex c and the all edges
incident on a or b are now made incident on c instead. If the original graph
contains edges ad and bd already, then edge-contraction at ab will result
in multi-edges connection d to the new vertex c. We take care to preserve

24

these multiplicities and not replace them or simplify them to a single edge
(as some graph theory textbooks do when defining edge-contraction). We
will show that edge-contractions of unsatisfiable graphs are unsatisfiable.

A subdivision of an edge ab in a graph yields a graph containing one new
vertex c, and with an edge set replacing ab by two new edges ac and bc. A
subdivision of a graph g is a graph resulting from the subdivision of edges
in g. Two graphs are homeomorphic if they are subdivisions of the same
graph. We will show that if two graphs are homeomorphic, then either both
are totally satisfiable or both are unsatisfiable.

A graph g is the topological minor of a graph h if a subdivision of g is
isomorphic to a subgraph of h. We will produce a complete list of topological
minors that appear as obstructions to graph satisfiability. Furthermore, it
is possible to embed multi-graphs into R3 and to allow them to inherit the
subspace topology of R3. Once embedded, homeomorphic graphs are also
homeomorphic in the topological sense and topological graph minors are
simply topological subspaces. We will use this to produce a complete list of
minimal unsatisfiable topological subspaces.

Theorem 1. If multi-graphs g and h are homeomorphic, then g ∼ h.

Proof. Since g and h are homeomorphic graphs, there exists a graph k such
that both g and h are subdivisions of k. It suffices to prove that k ∼ ⊥
if and only if g ∼ ⊥. In fact, it is enough to prove that k ∼ ⊥ if and
only if g′ ∼ ⊥, where g′ is a graph obtained via a single subdivision at an
arbitrary edge ab in k. We denote by c the new vertex in g′ created by the
subdivision.

Suppose that k ∼ ⊥. Then, there exists an unsatisfiable 2Cnf xk ∈ k.
We can write without loss of generality, xk = x ∧ (a ∨ b). Note that if xk

is not in this form, that is, if the (a, b)-clause is not positive in either a or
b, then we simply interchange a with a and/or b with b in order to bring
it into the desired form. We then define a simple 2Cnf xg′ supported on g′

as xg′ = x ∧ (a ∨ c) ∧ (c ∨ b). We note that this is indeed a Cnf in the set
g′. We prove that xg′ is unsatisfiable by showing that from any assignment
that satisfies xg′ , we can obtain an assignment satisfying xk, leading to a
contradiction.

Let A be an assignment that satisfies xg′ . Either c or c is an element of A.

25

If c ∈ A, then it implies

> ∼ xg′ [A] ∼ xg′ [c] = x ∧ b ∼ x[b] = xk[b] ∼ xk ∧ b.

Thus, xk is satisfiable, leading to a contradiction.
Similarly, if c ∈ A, then it implies

> ∼ xg′ [A] ∼ xg′ [c] = x ∧ a ∼ x[a] = xk[a] ∼ xk ∧ a.

Thus, xk is satisfiable, again leading to a contradiction. We can therefore
conclude that xg′ ∼ ⊥ and that g′ ∼ ⊥.

Conversely, suppose that g′ ∼ ⊥. Then, there exists an unsatisfiable 2Cnf
xg′ , supported on g′. By exchanging a with a, and/or b with b and/or c with
c, we can assume without loss of generality that either xg′ has the form

xg′ = x ∧ (a ∨ c) ∧ (c ∨ b) or xg′ = x ∧ (a ∨ c) ∧ (c ∨ b).

In the first case, since xg′ ∼ ⊥, we must also have xg′ [c] ∼ ⊥. Thus
x = xg′ [c] ∼ ⊥, and therefore the 2Cnf x∧ (a∨ b) is an unsatisfiable element
of k. In the other case, since xg′ ∼ ⊥, the 2Cnf obtained by replacing all
occurrences of c in xg′ with b must also be unsatisfiable. Thus, x ∧ (a ∨ b) is
unsatisfiable, and therefore k ∼ ⊥.

In view of the theorem we just proved, it is natural to attempt an enu-
meration of all unsatisfiable simple graphs up to homeomorphism. However,
we state here (without proof) that there are infinitely-many mutually non-
homeomorphic unsatisfiable graphs. Given below is such an incomplete in-
finite list of unsatisfiable graphs, none of which are homeomorphic to each
other.

. . .

We recall here the fact derived from Lemma 11, that if a graph is unsatis-
fiable, then so are all of its super-graphs. We note that the converse of this
result is not true, that is, there exist totally satisfiable graphs g and unsat-
isfiable graphs h such that g is a subgraph of h. For example, the triangle
graph is totally satisfiable, (as shown in Lemma 17) but is not (as

26

shown in the proof of Lemma 24).

Corollary 2. Let graph g be a topological minor of a graph h. Then, g ⊥=⇒ h.

Proof. By definition of topological minors, some subdivision g′ of g is iso-
morphic to a subgraph of h. By Theorem 1, if g ∼ ⊥ then g′ ∼ ⊥. By
Lemma 11, if g′ ∼ ⊥ then h ∼ ⊥. Thus, g ⊥=⇒ h.

We note that the converse of Corollary 2 is not true for the same reason
that the converse of Lemma 11 is not. Corollary 2 motivates the following
definition — a graph g is a minimal unsatisfiability graph if both of the
following conditions hold —

1. g is untotally satisfiable, and

2. every proper topological minor g′ of g is totally satisfiable.

Furthermore, a set M of simple graphs graphs is complete if every simple,
unsatisfiable graph has a subgraph that is homeomorphic to some element
of M . One can deduce, starting from Corollary 2, not only that such a
complete set of minimal unsatisfiability graphs exists but also that it must
be unique. After proving a result about the relation between edge-contraction
and unsatisfiable graphs, the remainder of this chapter is dedicated to finding
this unique complete set of minimal unsatisfiable simple graphs.

Theorem 2. Let g and h be graphs such that g can be obtained via a series
of edge-contractions at edges of h. Then, h ⊥=⇒ g.

Proof. If is enough to prove the theorem for the case when g can be obtained
from h via a single edge-contraction, say at the edge uv of h. We label the
new vertex in g formed by the merger of u and v by w.

Suppose that h ∼ ⊥. Then, there exists an unsatisfiable 2Cnf xh in the
set h. We can write without loss of generality,

xh = x ∧

(∧
a∈A

a ∨ u

)
∧

(∧
b∈B

b ∨ u

)
∧

(∧
c∈C

c ∨ v

)
∧

(∧
d∈D

d ∨ v

)
∧ (u ∨ v),

27

where x is either trivially true or is a simple 2Cnf, and A,B,C and D

are sets of literals such that A,B,C,D,¬A,¬B,¬C and ¬D are pairwise-
disjoint. If xh is not already in the desired form, then it can be modified as
detailed below.

1. If the (u, v)-clause in xh is negative in u, then exchange u with u.

2. If the (u, v)-clause in xh is negative in v, then exchange v with v.

3. For every X ∈ {A,B} and for every x ∈ X, if the (x, u)-clause in xh is
negative in x, then exchange x with x.

4. For every X ∈ {C,D} and for every x ∈ X, if the (x, v)-clause in xh is
negative in x, then exchange x with x.

We then choose

xg = x ∧

(∧
a∈A∪D

a ∨ w

)
∧

(∧
b∈B∪C

b ∨ w

)
,

and note that xg is a simple 2Cnf supported on g. We prove that xg is
unsatisfiable by showing that from any assignment that satisfies xg, we can
obtain an assignment satisfying xh, leading to a contradiction.

Given an assignment for xg, we can extend it to an assignment for xh by
replacing all occurrences of u by w, and all occurrences of v by w. The
resultant 2Cnf is then equal to

x ∧

(∧
a∈A∪D

a ∨ w

)
∧

(∧
b∈B∪C

b ∨ w

)
= xg,

is satisfiable. This contradicts the unsatisfiability of xh. We conclude that
xg is unsatisfiable, and hence that g is unsatisfiable.

We note that the converse of this theorem is not true, that is, there exist
a graph g is unsatisfiable that can be obtained via edge-contractions of a
totally satisfiable graph h. For example, consider the graphs g = and
h = . The graph g is unsatisfiable (as shown in Lemma 24) and can
be obtained from an edge-contraction while h is totally satisfiable (implied
by Theorem 2 and Lemma 18 when combined with the fact that h can be
reduced to K4 − e via other edge-contractions).

28

3.3 Totally satisfiable graph families

Lemma 17. Let C3 denote the triangle graph. C3 is unsatisfiable.

Proof. We write C3 as ab ∧ ac ∧ bc. Without loss of generality, every 2Cnf
in C3 can be written either in the form

x = (a∨b)∧(a∨c)∧(b, c)-clause or x = (a∨b)∧(a∨c)∧(b, c)-clause.

If x is not originally in this form, we modify it by interchanging a with
a and/or b with b and/or c with c till it is. In the first case, setting a to
true yields a single (b, c)-clause. This clause can be satisfied by making the
appropriate assignment for either b or c. In the second case, by setting both
a and c to true, we get x[a, c] = (b, c)-clause[c].

The literal b can then be set to an appropriate boolean value in order to
satisfy the (b, c)-clause. Thus, every 2Cnf in C3 totally satisfiable.

Corollary 3. Let Cn denote the cycle graph on n vertices. The graph Cn is
unsatisfiable for every n ≥ 3.

Proof. The graph Cn is homeomorphic to C3 for every n ≥ 3. Theorem 1
and Lemma 17 therefore imply the result.

Lemma 18. Let K4 denote the complete graph on four vertices. Let K4 − e

denote the graph obtained by deleting a single edge e from K4. The graph
K4 − e is unsatisfiable.

Proof. We enumerate the vertex set of K4 as {a, b, c,d}. Let e be the edge
cd. Every 2Cnf x supported on K4 − e can be written either in the form

x = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b, c)-clause ∧ (b, d)-clause, or

x = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b, c)-clause ∧ (b, d)-clause.

If x is not already in the desired form, then we can interchange each variable
with its negation till it is.

In the first case, by setting a to true, we obtain

x[a] = (b, c)-clause ∧ (b, d)-clause.

29

This can be satisfied by making appropriate assignments for c and d so
that they satisfy each of the clauses. In the second case, we can set a to true
to obtain

x[a] = d ∧ (b, c)-clause ∧ (b, d)-clause.

This resulting Cnf can be satisfied by setting d to true, by choosing an
assignment for b that would satisfy the (b, d)-clause, and by then choosing an
assignment for c that would satisfy the (b, c)-clause. We conclude that every
2Cnf in the set K4 − e is totally satisfiable.

Lemma 19. Tree graphs are totally satisfiable.

Proof. Every tree graph can be reduced via edge-contractions to a single-
vertex graph. A single-vertex graph is clearly totally satisfiable. The result
thus follows from Theorem 2.

3.4 Structure of graphs with two or three independent
cycles

In this section we prove lemmas about the structure of graphs that have
either two or three independent cycles. These structural results are needed
for proving the results in §3.4.1, including the main result of this chapter.

Lemma 20. Every connected graph having exactly two copies of C3 as sub-
graphs has one of the following three graphs as a topological minor –

p-configuration v-configuration e-configuration
(Bow-tie graph) (Butterfly graph) (K4 − e)

Remark 1. For convenience, we have labeled the three graphs as the p-
configuration (for path), the v-configuration (for vertex-adjacency) and the
e-configuration (for edge-adjacency) respectively.

Proof. We construct this list of topological minors from the bottom up. Two
copies of C3 can be put together to create a connected graph in exactly three
ways –

30

1. either the two cycles share zero vertices, or

2. they share exactly one vertex, or

3. they share exactly two vertices (that is, they share an edge).

In the first case, since the graph is still supposed to be connected, we
claim that the two copies of C3 must be connected by one or more paths.
Such a graph will always have the two copies connected by a single path as
a subgraph. Hence, the graph will also always have the p-configuration as a
topological minor.

In the second case, the graph will always have the v-configuration as a sub-
graph and therefore, also as a topological minor. Similarly, in the third case,
the graph will always have the e-configuration as a subgraph and therefore,
also as as topological minor.

Lemma 21. Every connected graph having exactly two or more independent
cycles has one of the following three graphs as a topological minor.

p-configuration v-configuration e-configuration
(Bow-tie graph) (Butterfly graph) (K4 − e)

Proof. Let g be a connected graph with two or more independent cycles. If
any two cycles share one or more edges, then K4 − e is a topological minor
of g. If no pair of cycles share any edges, but at least one pair shares a
vertex, then the v-configuration is a topological minor of g. If every pair of
cycles share neither any edges nor any vertices, then using the connectedness
of g, we infer that there must be a path connecting vertices in every pair of
cycles. Thus, in this case, the p-configuration is a topological minor of g.

Lemma 22. Every connected graph having three or more copies of C3 as
subgraphs has one of the following fifteen graphs is a topological minor.

31

ppp-config. #1 ppe-config. #2 vve-config. #1

ppp-config. #2 pvv-configuration vve-config. #2

ppv-config. #1 pve-configuration vee-configuration

ppv-config. #2 vvv-config. #1 eee-config. #1

ppe-config. #1 vvv-config. #2 eee-config. #2

Remark 2. Labels for each of the fifteen graphs (like ppp-config. #1) are
explained as part of the proof. The three copies of C3 that we use for this
labeling have been colored in the fifteen graphs for the sake of easy visual
identification and do not represent filled-in hyperedges.

Proof. We arrive at the list of topological minor by constructing them from
the bottom up. From the proof of Lemma 20, we know that every pair of
C3 can be joined in exactly one of three ways and that these three ways are
inequivalent when considering the topological minor relation. Graphs with
three or more copies of C3 will have at least

(
3

2=3

)
distinct pairs of C3.

To enumerate all possible pairwise-joints of these three C3, we form all
three-letter words formed using the letters {p, v, e}, with repetition allowed,
but order being irrelevant. For example, the word ppe would correspond
to the family of graphs where the two pairs of C3 are joined via the p-
configuration, while the third pair of C3 is joined via the e-configuration.
We also note that each word corresponds to a family of graphs and there
could be multiple non-isomorphic configurations in each such family. We
analyze each case separately below –

32

ppp-configuration. After joining the first pair of C3 in a p-configuration,
the third copy of C3 can be added in two different non-isomorphic ways
(such that the first and third, as well as the second and third are joined
via the p-configuration). Thus, we obtain only two configurations in
this case – ppp-config. #1 and ppp-config. #2.

ppv-configuration. After joining the first pair of C3 in a v-configuration,
the third copy of C3 can be added in two non-isomorphic ways. Thus,
we obtain only two configurations in this case, namely ppv-config. #1

and ppv-config. #2.

ppe-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 can be added in two non-isomorphic ways. Thus,
we obtain only two configurations in this case, namely ppe-config. #1

and ppe-config. #2.

pvv-configuration. After joining the first pair of C3 in a v-configuration,
the third copy of C3 can be added in only one way. Thus, we obtain
only one configurations in this case, namely the pvv-configuration.

pve-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 can added in only one way. Thus, we obtain only
one configurations in this case, namely the pve-configuration.

pee-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 cannot be added in a way that it is shares an edge
with the first and is connected by a path to the second. Thus, we do
not obtain configurations in this case.

vvv-configuration. After joining the first pair of C3 in an v-configuration,
the third copy of C3 can be added in two non-isomorphic ways. Thus,
we obtain only two configurations in this case, namely vvv-config. #1

and vvv-config. #2.

vve-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 can be added in two non-isomorphic ways. Thus,
we obtain only two configurations in this case, namely vve-config. #1

and vve-config. #2.

33

vee-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 can added in only one way. Thus, we obtain only
one configurations in this case, namely the vee-configuration.

eee-configuration. After joining the first pair of C3 in an e-configuration,
the third copy of C3 can be added in two non-isomorphic ways. Thus,
we obtain only two configurations in this case, namely eee-config. #1

and eee-config. #2.

Lemma 23. Every connected graph having three or more independent cycles
has one of the following four graphs as a topological minor.

v-configuration p-configuration eee-config. #1 eee-config. #2

(Butterfly graph) (Bow-tie graph) (K4) (K1,1,3)

Proof. It is enough to show that every graph listed in Lemma 22 has one
of the four graphs listed above as a topological minor. The p-configuration
is a subgraph of both the ppp-configurations, both the ppv-configurations,
both ppe-configurations, the pvv-configuration, and the pve-configuration.
Of the remaining configurations, both the vvv-configurations, both the vve-
configurations, and the vee-configuration contain the v-configuration as a
subgraph.

The first eee-configuration is isomorphic to K4 while the second is iso-
morphic to K1,1,3. Hence, all 15 configurations have at least one of the four
graphs listed above as a topological minor.

3.4.1 The complete set of minimal unsatisfiable simple graphs

We note that a graph g is unsatisfiable if and only if some connected com-
ponent of g is. We proceed to make some more observations about graphs
that are unsatisfiable.

Lemma 24. The following four graphs are minimal unsatisfiability graphs –

34

v-configuration p-configuration eee-config. #1 eee-config. #2

(Butterfly graph) (Bow-tie graph) (K4) (K1,1,3)

Proof. Consider the following unsatisfiable 2Cnfs.

x1 = 12 ∧ 13 ∧ 23 ∧ 34 ∧ 35 ∧ 45

x2 = 12 ∧ 13 ∧ 23 ∧ 34 ∧ 45 ∧ 46 ∧ 56

x3 = 12 ∧ 13 ∧ 14 ∧ 23 ∧ 24 ∧ 34

x4 = 12 ∧ 14 ∧ 23 ∧ 24 ∧ 25 ∧ 34 ∧ 45

Their associated graphs are the four graphs listed above in order. Since
these 2Cnfs are unsatisfiable, so are their graphs. To prove that they are
minimal unsatisfiability graphs, we need to show that all of the proper topo-
logical minors of these graphs are totally satisfiable. Since the four listed
graphs are not subdivisions of other graphs, it is enough to show that every
proper subgraph of these four graphs is totally satisfiable.

Every proper subgraph of the v-configuration is either a subgraph of
or . Both of these graphs can be reduced to C3 via edge-contractions.
In Lemma 17 we proved that C3 is totally satisfiable, and hence by Theorem
2 we conclude that both and are totally satisfiable. Therefore, by
Theorem 11, all the subgraphs of v-configuration are totally satisfiable.

Every proper subgraph of the p-configuration is either a subgraph of ,
or . The first two of these graphs can be reduced to proper sub-

graphs of the v-configuration via edge-contractions. Since we proved that all
proper subgraphs of the v-configuration are totally satisfiable, by Theorem
2 we conclude that both and are totally satisfiable. Lastly,
the graph is unsatisfiable if and only if at least one of its connected
components is. From Lemma 17, we conclude that is totally satis-
fiable. Theorem 11 implies that all proper subgraphs of the p-configuration
are totally satisfiable.

In Lemma 18, we proved that K4 − e is totally satisfiable. Since every
proper subgraph of K4 is also a subgraph of K4 − e, using Theorem 11 we
conclude that all proper subgraphs of K4 are totally satisfiable.

35

Every proper subgraph of K1,1,3 is either a subgraph of\; or K2,3, both
of which can be reduced to K4 − e via edge-contractions. Since K4 − e is
totally satisfiable, by Theorem 2 we conclude that all the proper subgraphs
of K1,1,3 are totally satisfiable.

Corollary 4. Every connected graph having three or more independent cycles
is unsatisfiable.

Proof. From Lemma 23 we know that every connected graph having three
or more independent cycles has one of the four graphs listed in that lemma
as a topological minor. Since we proved in Lemma 24 that all four of these
graphs are unsatisfiable, the result follows from Corollary 2.

Theorem 3. The set
{

, , ,

}
is the complete set of min-

imal unsatisfiable graphs.

Proof. We denote the set by M . Since we proved in Lemma 24 that the
elements of M are minimal unsatisfiability graphs, it suffices to show that a
graph g is unsatisfiable if and only if g has some element of M as a topological
minor. Corollary 2 implies the “if” part of this statement. We now show that
every unsatisfiable graph g has some element of M as a topological minor.
Throughout the remainder of the proof we suppose that g is unsatisfiable.

If g is connected and has three or more independent cycles, then the result
follows from Lemma 23. If g is connected and has exactly two independent
cycles, then by Lemma 21, either g has an element of M as a topological
minor or g has K4 − e as a topological minor. For the latter case, we
note that a graph with exactly two independent cycles having K4 − e as a
topological minor must in fact be a graph with two cycles sharing one or more
edges along with zero or more leaf edges (edges incident on vertices of degree
one). Such a graph can be reduced to K4 − e via edge-contractions. Using
Theorem 2, we conclude that K4 − e is totally satisfiable. However, this
contradicts the result proved in Lemma 18. We therefore conclude that any
connected graph g having exactly two independent cycles must have some
element of M must as a topological minor.

If g is connected and has exactly one cycle, then g can be reduced to C3

by edge-contractions. We know from Lemma 17 that C3 is totally satisfi-
able, and thus Theorem 2 implies that g is totally satisfiable, leading to a
contradiction. Thus g cannot have exactly one cycle. If g is connected and

36

has no cycles, then g is a tree graph. We know from Lemma 19 that tree
graphs are totally satisfiable, which leads to a contradiction. Thus g cannot
have zero cycles.

Finally, suppose g is unsatisfiable is not connected. Then, some connected
component g′ of g is unsatisfiable. By our previous argument, we know
that g′ has some element of M . as a topological minor. This element of M
must therefore also be a topological minor of g. We have showed that any
unsatisfiable graph connected or not, has an element of M as a topological
minor.

Using the correspondence between graph and their topological embedding
into R3, we state a result (without proof) that is equivalent to the statement
of Theorem 3.

Remark 3. A graph g is unsatisfiable if and only if g when embedded into R3

has a subspace is homeomorphic as a topological space to one of the following
cell complexes.

3.5 Conclusion to our study of 2GraphSAT

The results of this chapter can all be found in our paper [11].
Given a set of graphs A, we can use the notation Forb∗(A) to denote

the set of all graphs not containing any element from A as a topological
minor. In other words, this is the set obtained by forbidding elements of A
as topological minors. Using this definition, we can summarize the results
proved in this chapter more compactly as –

1. Set of all totally satisfiable simple graphs
= Forb∗(K4, butterfly graph, bow-tie graph, K1,1,3).

2. Set of all totally satisfiable looped-multi-graphs = Language of 2graph-
sat decision problem
= Forb∗(K4, double-loop graph, dumbbell graph, ab4).

3. There is a P-time algorithm for 2graphsat– though implementing this
algorithm is not a practical thing to do.

37

3.5.1 Connection to the Robertson-Seymour graph minor
theorem

In our main result, Theorem 3, we showed that given a simple graph, all 2Cnfs
in its corresponding set are satisfiable if and only if four specific graphs are
forbidden as topological minors of the original graph. Thus it is natural to
ask if the forbidden minors theory of Robertson-Seymour [9]–[10] applies to
our problem.

The Robertson-Seymour graph Theorem (RST) states that if a graph-
family F is minor-closed, meaning that every minor of a graph in F is also
in F , then there are at most finitely-many forbidden minors of F – meaning
a graph belongs to F if and only if it does not contain as a minor any of
these forbidden graphs. In our case, the graph family of interest F is the
set of totally satisfiable graphs. If totally satisfiable graphs are shown to be
minor-closed then by RST we will be able to find a finite number of forbidden
minors. However, totally satisfiable graphs are only closed under topological
minoring and not under minoring. Hence RST does not apply and a finite list
of topological minor obstructions is not guaranteed. Fortunately, our result
implies that there are indeed only finitely-many obstructions.

3.5.2 Computational complexity of 2GraphSAT

There are interesting implications of our result on the computational com-
plexity of 2sat and 2graphsat. Since 2sat is known to be in complexity
class P, it would at first glance appear that we have made the problem worse:
one can infer from our main theorem that the satisfiability of a given 2Cnf can
be established by looking for four specific topological minors in its associated
graphs. If these four topological minors are absent, then the 2Cnf must be
satisfiable. If they are present, then the 2Cnf may or may not be satisfiable.
This may appear to be a setback since the graph minor decision problem is
known to be NP-complete, implying that the graph topological minor
problem will also be NP-complete.

However, on closer inspection, one realizes that the decision problem of
determining if a fixed graph is present as a topological minor can actually be
resolved in polynomial time as a consequence of the graph minor theorem.
Since our set of forbidden topological minors is finite we can therefore guar-

38

antee that the task of searching for them can be accomplished in polynomial
time.

Thus, we have done “no worse” than the original 2sat problem as both can
still be solved in polynomial time. We emphasize however that as we have
stated earlier, our goal in this chapter is the characterization of unsatisfiable
2Cnfs and graphs as opposed to questions of algorithmic efficiency for solving
the satisfiability problem for 2Cnfs for which, in any case, efficient algorithms
already exist.

39

Chapter 4

Local rewriting in graphs

We start by lifting any restrictions placed in the previous chapter on the Cnfs
and graphs we were studying. A Cnf can now have clauses of any length, and
a graph in general refers to a looped-multi-hypergraph. We take a brief look
at 3graphsat in §4.1 and explore the need for graph local rewriting in §4.2.
We then explain how graph rewriting works in §4.3 before stating and proving
the main result of this chapter – the local graph rewriting theorem in §4.4.
The close this chapter a discussion on some consequences of this theorem
and an implementation of local rewriting in code (as a part of graphsat).

4.1 A brief look at 3GraphSAT

3graphsat is the graph decision problem that asks if a given looped-multi-
hypergraph (also called a MHGraph in the next chapter) is totally satisfiable.

• Instance: Given a specific looped-multi-hypergraph g.

• Question: Is every 3Cnf x such that x ∈ g satisfiable.

In Chapter 3 we enumerated a complete list of minimal unsatisfiable graphs
and a proof that 2graphsat is in complexity class P. We might hope for
a similar complete list for 3graphsat, and perhaps a different complexity
class for 3graphsat. Unfortunately, this is not the case. The 3graphsat
problem is more complicated for three main reasons –

1. The minimality of the 2graphsat list hinged on homeomorphisms
(i.e. edge-subdivisions) preserving graph satisfiability. There is no
single analogue of homeomorphisms, edge-subdivisions, and topological
minoring in the case of hypergraphs.

40

2. Bruteforce checking of the satisfiability status of a graph is not a sus-
tainable option for 3graphsat owing to the large number of Cnfs
supported by a typical looped-multi-hypergraph.

3. In studying 2graphsat, we argued (in Lemma 16) that we can always
reduce higher multiplicity edges down to 1. This was because a multi-
plicity 4 edge is always unsatisfiable, a multiplicity 3 edge forces an as-
signment on its vertices, and a multiplicity 2 edge forces an equivalence
on its vertices. Such a complete result does not exist for hyperedges.
The best we can do is to say that a multiplicity 8 hyperedge is always
unsatisfiable, and a multiplicity 7 hyperedge forces assignments on its
vertices.

These factors conspire to make 3graphsat a harder problem to solve, but
also yield richer structures and relations between various multi-hypergraphs
and their satisfiability statuses.

4.2 The need for local rewriting

We are looking for hypergraph analogue(s) of edge-subdivisions/edge-smoothing
in order to define the corresponding notion of minimality in 3graphsat.
This leads us naturally into local rewriting, i.e. operations where change the
graph at a single vertex and its neighborhood. The idea is to find changes or
rewrites that leave the satisfiability of a graph unchanged. For example, edge-
subdivision can be though of as the rewrite g ∧ ab g ∧ ac ∧ bc, while the
inverse operation of edge smoothing can be thought of as g ∧ ac ∧ bc ab.
Using local rewriting, we try to generalize this rule as well as the proof that
it leave the satisfiability of a graph unchanged.

4.3 What is graph rewriting?

Graph rewriting concerns the technique of creating a new graph out of an
original graph algorithmically. Formally, a graph rewriting system usually
consists of a set of graph rewrite rules of the form gL gR. The idea is
that to apply the rule to a graph g, we search it for the presence of gL and
replace the part that matches with g while leaving the rest unchanged gR.

41

Such rewrite rules can come in two forms, depending on the selection
criterion for gL –

1. Local rules – when a graph is rewritten at a particular vertex. In
this case, all edges not adjacent to the vertex remain unaffected by the
rewrite.

2. Global rules – when a graph is rewritten by searching for specific
subgraphs that are isomorphic to gL.

We will concern ourselves with local rules in this chapter, while global rules
will be handled by §6.2.

For local rules, we focus on the extended notion of “making assignments”
detailed in §2.3.6. For a Cnf x, we assign at a literal l and denote it as x[l].
For a set of Cnfs g, we assign at a vertex v and denote it as g[v].

Literal assignments on Cnfs have two key properties that make them useful
–

1. If x is a Cnf and l is a literal that is in the set of literals of x, then
x[l] is guaranteed to be smaller than x – it either has fewer clauses, or
it has the same number of clauses but with those clauses having fewer
literals in them.

2. x is satisfiable if and only if either one of x[v] or x[v] are satisfiable.

Vertex assignments on sets of Cnfs also have similar properties –

1. If g is a set of Cnfs and v is a vertex in the vertexset of g, then g[v]

will always have Cnfs that are smaller than the Cnfs in g.

2. g[v] is totally satisfiable if and only if g is totally satisfiable.

In the next section, we present an alternate expression for computing g[v]

that is easier to write when performing calculations, easier to code when
programming it into a computer, and is a form that is used for proving
several global graph rewrite rules.

We call this result the local rewriting theorem. The essence of this result is
that even though satisfiability (both boolean and graph) is a global problem
i.e. it is affected by the full structure of the Cnf, it can also be broken down
into a series of local assignments in the case of Cnfs and a series of local

42

rewrites in the case of graphs. Given a graph, we can decompose it at one of
its vertices of by computing this alternate expression in terms of the sphere
and link of the graph without needing to step down to the level of Cnfs.

4.4 The local rewriting theorem

Theorem 4. Let g be graph. We call g[v] the local decomposition of g at
vertex v. This local decomposition is given by —

g[v] = sphere(g,v)∧ star(g,v)[v] =
⋃

gi hi : Graph
gi∧hi = link(g,v)

sphere(g,v)∧ (gi ∨ hi)

(4.1)

Proof. First, we note that g = sphere(g,v)∧ star(g,v). Said differently, the
sphere and the star together form a partition of the edgeset of a graph.
Since we know that g[v] ∼ g, it suffices to show that star(g,v)[v] =⋃

gi hi : Graph
gi∧hi = link(g,v)

(gi ∨ hi).

Suppose (x : Cnf) ∈ star(g,v). We note that there are four types of clauses
in x —

• clauses that contain the literal v.

• clauses that contain the literal v.

• clauses that contain neither v, nor v – actually this case is not possible
since x ∈ star(g,v).

• clauses that contain both v and v – actually this case is not possible
since the edges corresponding to x can be incident on the vertex v only
once.

Thus, we can partition x into x1 containing clauses that contain v, and x2

containing clauses that contain v. Thus, x[v] ∨ x[v] = (> ∧ x2[v]) ∨ (x1[v] ∧
>) = x2[v] ∨ x1[v]. We note that x2[v] and x1[v] belong to graphs gi and hi

respectively for some i such that gi ∧ hi = link(g,v). Thus, we have shown
that star(g,v)[v] ⊆

⋃
gi hi : Graph

gi∧hi = link(g,v)
(gi ∨ hi).

43

Conversely, suppose (y : Cnf) ∈ gi ∨ hi for some i, such that gi ∧ hi =

link(g,v). Thus, we can factor y as y = y1 ∨ y2, for some Cnfs y1 and y2

such that y1 ∈ gi and y2 ∈ hi. Consider then the Cnf y′ given by y′ =

(y1∨v)∧ (y2∨v). Firstly, we observe that y = y′[v]∨y′[v]. Secondly, we note
that y′ ∈ star(g,v) since the effect of disjuncting with v is to extend each
clause in y1 and y2 by a literal in v. Thus, we can write y ∈ star(g,v)[v].
We have now shown that star(g,v)[v] ⊇

⋃
gi hi : Graph

gi∧hi = link(g,v)
(gi ∨ hi).

Corollary 5. Let g be a Graph and let v be a vertex of g. If g is unsat-
isfiable, then there exists a 2-partition (h1,h2) of link(g,v) such that both
sphere(g,v)∧h1 and sphere(g,v)∧h2 are unsatisfiable.

Proof. Using the map γ defined in §2.3.2 on Equation 4.1 we can write,

γ(g)

= γ(g[v])

= γ

 ⋃
hi hj : Graph

hi∧hj = link(g,v)

sphere(g,v)∧ (hi ∨ hj)

 , (Lemma 3)

=
∧

hi hj : Graph
hi∧hj = link(g,v)

γ
(

sphere(g,v)∧ (hi ∨ hj)
)

(Lemma 2)

←−
∧

hi hj : Graph
hi∧hj = link(g,v)

γ
(

sphere(g,v)∧ hi

)
∨ γ

(
sphere(g,v)∧ hj

)
(Lemma 9)

If g is unsatisfiable, then we can infer the existence of some 2-partition
(h1,h2) of link(g,v) such that both sphere(g,v)∧h1 and sphere(g,v)∧h2

are unsatisfiable.

Corollary 6. Let g be a Graph and let v be a vertex of g. If either one of
sphere(g,v)∧h1 or sphere(g,v)∧h2 is totally satisfiable for every 2-partition
(h1,h2) of link(g,v), then g itself is totally satisfiable.

Proof. This is the contra-positive of Corollary 5.

44

4.5 Consequences of local graph rewriting

Given a graph g, local graph rewriting gives us a tool to break its satisfia-
bility problem into a series of partial satisfiability graphs. The trouble with
this result is that the rewrite is a uni-directional implication and not a bi-
directional equality. As a result, it is possible to prove that a graph is totally
satisfiable, using this method, but not that it is unsatisfiable.

This short-coming can however be mitigated somewhat by our choice of
vertex v at which we choose to rewrite. We will prefer using a vertex of low
degree to as to ensure a smaller size of link(g,v). Picking a vertex of degree
d results in a link of size d. The number of nonempty partitions of the link
(we only care about nonempty partitions) because the empty partition terms
do not affect satisfiability) are given by 2d−1 − 1. Seeing as d appears in the
exponent of this count, we choose a vertex of lowest possible degree in d.

The other major use of local graph rewriting is that it can be applied
recursively, first to g at a a vertex v1, then to the term in the formula
sphere(g,v1) ∧ link(h1,v1), and then to a vertex v2 of this resultant term,
and so on This results in ever smaller graphs, thus giving us an algorithm
for proving that a graph g is totally satisfiable by deferring the calculation
to smaller parts of the graph.

We use local rewriting to prove several different graph reduction rules in
§6.2. We also enumerate some standard graph disjunctions in §6.1.

4.6 Implementation of local graph rewriting in code

We will introduce the graphsat Python package in the next chapter and
provide details on its various modules and functions. We mention it here
because we will use some of its functions in §6.2 to construct graphs (i.e.
terms of type mhgraph.MHGraph) and compute their disjunction (using the
function graph_or).

Below we include the docstring of the function, informing us what exactly
the function does, followed by its implementation as a code-snippet. The im-
plementation uses other functions defined in the package like mhgraph.sphr,
operations.graph_or, and compute_all_two_partitions_of_link. We will
not detail each of these subsidiary functions here. We leave it instead to the

45

interested reader to look at graphsat’s source code for more details.

(python3.9) (graph_rewrite.py) <<local-rewrite-docstring>>

"""Locally rewrite at ``vertex`` assuming that the graph is only partially known.

This function only affects edges incident on ``vertex``, assuming that

``mhg`` only represents a part of the full graph.

The result is a dictionary of Cnfs grouped by their MHGraphs.

"""

(python3.9) (graph_rewrite.py) <<local_rewrite>>

def local_rewrite(mhg: mhgraph.MHGraph, vertex: mhgraph.Vertex) -> dict[Any, Any]:

<<local-rewrite-docstring>>

Compute the sphere of mhg at vertex

sphr: mhgraph.MHGraph = mhgraph.sphr(mhg, vertex)

All 2-partitions of link of mhg at vertex.

two_partitions: Iterator[tuple[list[mhgraph.MHGraph], list[mhgraph.MHGraph]]]

two_partitions = compute_all_two_partitions_of_link(mhg, vertex)

Initialize resultant Cnf set.

resultant_cnfs: set[cnf.Cnf] = set()

Loop over all 2-partitions of the link.

for hyp1, hyp2 in two_partitions:

Disjunction of the parts.

hyp1_or_hyp2: set[cnf.Cnf] = op.graph_or(hyp1, hyp2)

Conjunction with the sphere

sphr_hyp: set[cnf.Cnf] = op.graph_and(sphr, hyp1_or_hyp2)

Add result to set of resultant Cnfs.

resultant_cnfs |= sphr_hyp

Group Cnfs by the Graphs to which they belong.

return graph_collapse.create_grouping(set(resultant_cnfs))

46

Chapter 5

graphsat Python package

We introduce a Python package called graphsat1 which recognizes clauses,
Cnfs, graphs, hypergraphs, and multi-hypergraphs. The package implements
local graph-rewriting, graph-satchecking, calculation of graph disjunctions,
as well as checking of new reduction rules.

This library is written in Python version 3.9, and is available [12] under
the GNU GPLv3.0 open license. It is set to be released on the Python
Packaging Index (PyPI) as an open-source scientific package written in the
literate programming style. I specifically chose to write this package as a
literate program, despite the verbosity of this style, with the goal to create
reproducible computational research and ensure that all the computations in
this thesis are repeatable and the code is reusable.

Currently, graphsat implements the following algorithms –

• For formulae in conjunctive normal forms (Cnfs), it implements vari-
ables, literals, clauses, Boolean formulae, and truth-assignments. It
includes an API for reading, parsing and defining new instances.

• For graph theory, the package includes graphs with self-loops, edge-
multiplicities, hyperedges, and multi-hyperedges. It includes an API
for reading, parsing and defining new instances.

• For satisfiability of Cnfs and graphs, it contains a bruteforce algorithm,
an implementation that uses the open-source sat-solver PySAT [13],
and an implementation using the MiniSAT solver [14].

• Additionally, for graph theory, the library also implements vertex maps,
vertex degree, homeomorphisms, homomorphisms, subgraphs, and iso-
morphisms. This allows us to encode local rewriting rules as well as
parallelized grid-based searching for forbidden structures.

1GitHub link: https://github.com/vaibhavkarve/graphsat

47

https://pypi.org/
https://pysathq.github.io/
http://minisat.se/
https://github.com/vaibhavkarve/graphsat

• Finally, graphsat has a tree-based recursive reduction algorithm that
uses known local-rewrite rules as well as algorithms for checking satis-
fiability invariance of proposed reduction rules.

graphsat has been written in the functional-programming style whose prin-
ciples can be summarized as —

• Avoid classes as much as possible. Prefer defining functions instead.

• Write small functions and then compose/map/filter them to create
more complex functions (using the functools library).

• Use lazy evaluation strategy whenever possible (using the itertools

library).

• Add type hints wherever possible (checked using the mypy static type-
checker).

• Add unit-tests for each function (checked using the pytest framework).

5.1 Overview of the package

The package consists of several different modules.

1. Modules that act only on Cnfs –

cnf.py Constructors and functions for sentences in con-
junctive normal form (Cnf).

cnf_simplify.py Functions for simplifying Cnfs, particularly (a∨
b ∨ c) ∧ (a ∨ b ∨ c) (a ∨ b).

prop.py Functions for propositional calculus – conjunc-
tion, disjunction and negation.

2. Modules that act only on graphs –

graph.py Constructors and functions for simple graphs.
mhgraph.py Constructors and functions for Loopless-Multi-

Hyper-Graphs
morphism.py Constructors and functions for Graph and MH-

Graph morphisms.

48

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/itertools.html
https://mypy.readthedocs.io/en/stable/
https://docs.pytest.org/en/latest/

3. Modules concerning sat and graphsat–

sat.py Functions for sat-checking Cnfs, Graphs, MH-
Graphs.

sxpr.py Functions for working with s-expressions.
operations.py Functions for working with graph-satisfiability

and various graph parts.

4. Modules that implement and compute local graph rewriting, rule re-
duction etc.

graph_collapse.py Functions for collapsing a set of Cnfs into com-
pact graphs representation.

graph_rewrite.py An implementation of the Local graph rewriting
algorithm.

5. Finally, the test suite for each module is located in the test/ folder.
This includes the following files –

test_cnf.py test_cnf_sumplify.py test_graph.py

test_morphism.py test_graph_collapse.py test_prop.py

test_operations.py test_graph_rewrite.py test_sxpr.py

test_sat.py test_mhgraph.py

In the next section, we lay out a description and implementation of the
cnf.py module (and its corresponding test module test_cnf.py) in the liter-
ate programming style. A similar description could be written for every one
of the modules in graphsat, though this would make this thesis quite long,
unwieldy and dry.

5.2 Introduction to cnf.py

This module defines Cnf (boolean formulas in conjunctive normal form) as a
python class and creates an API of functions for defining Cnfs and computing
with them. We define variables, literals, clauses, Cnfs and assignements in
§5.3 and functions that manipulate them in §§5.4–5.6.

The end-goal of this module is to equip us with a Cnf-calculator using
python syntax. We illustrate this using the following example. Consider the
following statement — assigning the variable x2 to true and x3 to false in
(x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ x5) gives us x1 ∨ x4.

49

We can verify this statement by carrying out the following calculation.

(124, 135)
[
2, 3

]
= (1⊥4, 135)

[
3
]

= (14, 135)
[
3
]

= 14, 1>5

= 14,>

= 14.

The same calcultion can also be carried out in python using the functions
defined in this module. The output is included below the codeblock.

(python3.9) (scratch) <<example>>

from cnf import assign, Assignment, cnf, Cnf, TRUE, FALSE

x : Cnf = cnf([[1, -2, 4], [1, -3, 5]])

a : Assignment = {2: TRUE, 3: FALSE}

return assign(x, a)

Output:

Cnf({Clause({1, 4})})

All codeblocks in this chapter have been formatted in a manner similar to
the one shown above. The top-margin of the codeblock starts by indicating
the programming language used in the block (python3.9 in the example).
Shell scripts for example will have sh in that position instead.

The second of three slots represents the file of which this codeblock is a
part. For example, a codeblock that has cnf.py in this slot will be a part
of the cnf.py file. This helps with persistence of variables and definitions
defined the file – codeblocks in cnf.py can refer to other variables from dif-
ferent codeblocks that are also part of cnf.py. We use the name scratch to
represent a throw-away file. In the example above, the scratch label means
that this was a one-time calculation that we do not wish to store in a file.

The third label in the top-margin of the codeblock represents a unique
identifier of the codeblock (<<example>> in the example above). This iden-
tifier is used to keep track of the codeblock we are referring to as well as
to refer to it inside other codeblocks (via the process called tangling in the
literate programming terminology).

50

5.2.1 Definitions

We start by summarizing the relevant definitions in top-down order. Details
for each definition and accompanying implementations can be found in the
relevant subsections.

• A Cnf is a conjunction of one or more Clauses. It is implemented as a
subclass of frozensets of Clauses in §5.3.5.

• A Clause is a disjunction of one or more Lits. It is implemented as a
subclass of frozensets of Lits in §2.2.3.

• A Lit is either a Variable, the negation of a Variable, or a Bool. These
are usually called Literals in CS literature but this sounds too close
to typing.Literal which is already defined in python and refers to a
different, unrelated object. It is implemented as a subtype of python’s
built-in data type int in §5.3.2.

• A Variable is any element from a fixed countably infinite set of symbols
that can be assigned the value of Bool in a boolean expression. We
implement it as a subtype of int, with the additional restriction that
only positive int values are allowed. The implementation is explained
in §2.2.1.

• A Bool is a set of two reserved the symbols called TRUE and FALSE (not
to be confused with bool, True and False). Justification of the need for
defining such a type distinct from bool can be found in §5.3.3. That
section also details the implementation of Bool as a subclass of Lits.

51

5.2.2 Overview of cnf.py
(python3.9) (cnf.py) <<cnf.py-full>>

#!/usr/bin/env python3.9

"""Constructors and functions for sentences in conjunctive normal form (Cnf)."""

Imports

=======

<<imports>>

Classes and Types

=================

<<Variable>>

<<Lit>>

<<Bool>>

<<TRUE_and_FALSE>> # Instances of Bool, needed to define Clause and Cnf

<<Clause>>

<<Cnf>>

<<Assignment>>

Constructor Functions

=====================

<<variable>>

<<lit>>

<<clause>>

<<cnf>>

Helpful Constants

=================

<<constants>> # not documented, for internal use only

Basic Functions

===============

<<neg>>

<<absolute_value>>

<<lits>>

Functions for Simplification

============================

<<tautologically_reduce_clause>>

<<tautologically_reduce_cnf>>

Functions for Assignment

========================

52

<<assign_variable_in_lit>>

<<assign_variable_in_clause>>

<<assign_variable_in_cnf>>

<<assign>>

if __name__ == '__main__':

<<standalone_run_commands>>

5.2.3 Imports and dependencies

We start by importing the required packages. We will be using the typing

and collections.abc libraries to add type-hints throughout our code. This
acts as a kind of documentation while also catching type-errors when we use
it in conjunction with an external static type-checker like mypy.

(python3.9) (cnf.py) <<imports>>

from collections.abc import Set, Callable, Collection, Iterator, Mapping

import functools as ft

from typing import final, Final, Mapping, NewType, Union

from loguru import logger

5.3 Types and their constructor functions

We now implement each of the definitions given in §5.2.1 as types. For each
type we will also define a unique constructor function.

5.3.1 Variables

A Variable is any element from a fixed countably infinite set of symbols that
can be assigned the value of Bool in a boolean expression. We use python’s
built-in int type as our countably infinite set. Using typing.NewType, we can
declare Variable to be a subtype of int. This means that any int n can be
cast into a term of type Variable as Variable(n). In type-theoretic notation,
we can write the relation between Variable and int as Variable @ int.

53

https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/collections.abc.html
https://mypy.readthedocs.io/en/stable/
https://docs.python.org/3/library/typing.html#typing.NewType

(python3.9) (cnf.py) <<Variable>>

Variable = NewType('Variable', int)

Variable.__doc__ = """`Variable` is a subtype of `int`."""

In fact, we only want the positive integers to denote Variables. However,
this restriction cannot be encoded when defining the type itself and so we
also write a constructor function variable to check for positivity.

(python3.9) (cnf.py) <<variable>>

def variable(positive_int: int) -> Variable:

<<variable-docstring>>

if positive_int <= 0:

raise ValueError('Variable must be a positive integer.')

return Variable(positive_int)

We note that this function is injective and idempotent.

(python3.9) (test/test_cnf.py) <<test_variable>>

def test_variable():

assert variable(1) == 1

assert variable(11) == 11

assert variable(variable(2)) == variable(2) # Test for idempotence

pytest.raises(ValueError, variable, 0)

5.3.2 Lits

A Lit is either a Variable, its negation, or a Bool. We have not yet defined
Bool, but for now we can simply assume that it is a special type of int

(justification for this can be found in §5.3.3). Since both Variable and Bool

are subtypes of int, we can define Lit in a similar. The only caveat to this
is that we want Lit to act as a subscriptable argument later, allowing us to
define Clause as a being a subtype/subclass of frozen sets of Lit. To make
Lit subscriptable, we define it as a subclass of int instead of a subtype.

(python3.9) (cnf.py) <<Lit>>

class Lit(int):

"""`Lit` is a subclass of `int`. It has no other special methods."""

Next, we define a constructor function for Lit, called lit. On Bools, we
want the constructor function to act as the identity function, while on an
integer argument, it should check that the integer is nonzero (thus ensuring

54

that it is either a Variable or its negation). To implement such a piece-
wise definition we use functools.singledispatch. This allows us to pick the
correct variant of lit based on the type of its first (and only) argument.

(python3.9) (cnf.py) <<lit>>

@ft.singledispatch

def lit(int_or_bool: Union[int, Bool]) -> Lit:

<<lit-docstring>>

raise TypeError('Lit must be either Bool or int.')

@lit.register

<<lit_bool>>

@lit.register

<<lit_int>>

where we have the following functions that are single-dispatched based on
the type of the first argument.

(python3.9) (cnf.py) <<lit_bool>>

def lit_bool(arg: Bool) -> Lit:

"""Return as is because Bool is already a subtype of Lit."""

return arg

(python3.9) (cnf.py) <<lit_int>>

def lit_int(arg: int) -> Lit:

"""Cast to Lit."""

if arg != 0:

return Lit(arg)

raise ValueError('Lit must be a nonzero integer.')

As mentioned in its docstring below, lit is an idempotent function. To
ensure this, we write the following set of tests. (While we have not yet defined
Bool.TRUE and Bool.FALSE, their meaning in the following assert statements
should be obvious from context).

(python3.9) (cnf.py) <<lit-docstring>>

"""Constructor-function for Lit type.

By definition, a `Lit` is in the set ℤ \ {0} ∪ {`TRUE`, `FALSE`}.

This function is idempotent.

"""

55

https://docs.python.org/3/library/functools.html#functools.singledispatch

(python3.9) (test/test_cnf.py) <<test_lit>>

def test_lit():

assert lit(1) == 1

assert lit(-1) == -1

assert lit(11) == 11

assert lit(TRUE) == TRUE

assert lit(FALSE) == FALSE

assert lit(lit(2)) == lit(2) # Test for idempotence.

assert lit(lit(TRUE)) == lit(TRUE) # Test for idempotence.

assert lit(lit(FALSE)) == lit(FALSE) # Test for idempotence.

pytest.raises(ValueError, lit, 0)

5.3.3 Bools

Bool refers to two reserved symbols – TRUE and FALSE. Note that python
already has a bool type (with elements True and False). However, bool is
actually implemented as a subclass of the int type. This has some unintended
consequences when considering data structures that contain both integers
and elements due to the fact that True and False are just aliases for the
integers 1 and 0 respectively. This means that python will always simplify
the set {1, 2, 3, True} to {1, 2, 3} since it treats True as a duplicate of
1. This is a big problem and the primary reason why we define Bools to be
distinct from bool.

We want Bool to be a type that is a subclass of int and not just a subtype.
In fact, since all Bools are Lits, we also want Bool to be a subtype of Lit.
Thus we define Bool as shown below with special methods __str__, __hash__,
and __eq__. Additionally, we define the __repr__ method to be identical to
the __str__ method. All other methods of Bool are inherited from the int

parent type.

(python3.9) (cnf.py) <<Bool>>

@final

class Bool(Lit):

"""`Bool` is a subclass of `Lit`.

It overrides the ``__str__``, ``__repr__``, ``__hash__`` and ``__eq__``

methods inherited from :obj:`int` (and from Lit).

"""

<<Bool-str>>

56

__repr__ = __str__

<<Bool-hash>>

<<Bool-eq>>

We now give detailed definitions for each of Bool’s special methods. The
__str__ method allows us to change the value displayed when we print the a
Bool. Even though python will internally store Bools as 0 and 1, when asked,
it will still print the values as <Bool: TRUE> and <Bool: FALSE> respectively.
Any other numeric value raises a ValueError.

(python3.9) (cnf.py) <<Bool-str>>

def __str__(self) -> str:

"""Bool(0) and Bool(1) are treated as constant values labeled FALSE and TRUE."""

if self.__int__() == 0:

return '<Bool: FALSE>'

if self.__int__() == 1:

return '<Bool: TRUE>'

raise ValueError('In-valid Bool value encountered.')

To prevent python from simplifying {1, TRUE} to {1}, we modify its hash
value. We set the hash of TRUE to hash(str(TRUE)), which simplifies to
4422589586725646474. Similarly, the hash of FALSE is set to 6211323488567046769.

(python3.9) (cnf.py) <<Bool-hash>>

def __hash__(self) -> int:

"""Ensure that ``hash(Bool(n))`` doesn't clash with ``hash(n)``."""

return hash(str(self))

Moreover, we redefine the __eq__ method to now use hash values as a
means to establish equality. This makes Bool(n) unequal to n.

(python3.9) (cnf.py) <<Bool-eq>>

def __eq__(self, other: object) -> bool:

"""Make ``Bool(n)`` unequal to ``n``."""

return hash(self) == hash(other)

Finally, having defined the class of Bool, we now define exactly two in-
stances of Bool. In type-theoretic language, we can say that Bool is an enu-
merated type (since we enumerate all its instances explicitly). Furthermore,
to prevent the user from accidentally (or maliciously) redefining the values
of TRUE and FALSE, we use typing.Final to disable overriding and re-assigning

57

https://docs.python.org/3/library/typing.html?#typing.Final

of these constants. We also mark the class definition of Bool itself with the
@typing.final decorator in order to prevent this class from being sub-classed
by the user.

(python3.9) (cnf.py) <<TRUE_and_FALSE>>

#: ``TRUE = Bool(1)``, a final instance of Bool.

TRUE: Final = Bool(1)

#: ``FALSE = Bool(0)``, a final instance of Bool.

FALSE: Final = Bool(0)

Lastly, to check that the Bool values indeed possess all the desired prop-
erties, we add unit-tests.

(python3.9) (test/test_cnf.py) <<test_Bool>>

def test_Bool():

assert TRUE == TRUE # check for consistency

assert TRUE not in [1, 2, 3] # check that eq is working

assert TRUE in {1, 2, 3, TRUE} # check that eq and hash are working

assert isinstance(TRUE, Bool) # check that python recognizes the class

assert not isinstance(TRUE, bool) # check that Bool and bool are district

5.3.4 Clauses

Next, we wish to define a Clause to be a container of Lits. The choice of
container is driven by three properties we desire in Clauses –

1. We do not care for repetitions in the clause. This is in keeping with
the identity x ∨ x = x.

2. We also do not care about the ordering of elements in a clause. This
is in keeping with the fact that disjunction is commutative.

3. Looking ahead, we will want to put clauses inside other containers to
form Cnf. Thus it is desirable that clauses be hashable (and therefore
immutable) objects.

These properties suggest that we should have our containers be frozensets
(python’s unordered, immutable, hashable sets). We define Clause as a sub-
class instead of just a subtype, allowing us to also override its __str__ method
to offer more human-readable printouts.

58

https://docs.python.org/3/library/typing.html?#typing.final

(python3.9) (cnf.py) <<Clause>>

class Clause(frozenset[Lit]): # pylint: disable=too-few-public-methods

"""`Clause` is a subclass of `frozenset[Lit]`."""

def __str__(self) -> str:

"""Pretty print a Clause after sorting its contents."""

sorted_clause: list[Lit] = sorted(self, key=absolute_value)

return '(' + ','.join(map(str, sorted_clause)) + ')'

Having defined a class, we next define a constructor function clause for
said class. The function ensures that a Clause is always a nonempty collection
of Lits. The function is also guaranteed to be idempotent.

(python3.9) (cnf.py) <<clause>>

def clause(lit_collection: Collection[int]) -> Clause:

<<clause-docstring>>

if not lit_collection:

raise ValueError(f'Encountered empty input {list(lit_collection)}.')

return Clause(frozenset(map(lit, lit_collection)))

Finally, we add in the doc-string describing the function we have just
defined and we add some unit-tests to for the function as well.

(python3.9) (cnf.py) <<clause-docstring>>

"""Constructor-function for Clause type.

By definition, a `Clause` is a nonempty frozenset of Lits. This function is idempotent.

Args:

lit_collection (:obj:`Collection[int]`): a nonempty collection of ints.

Return:

Check that each element in the collection satisfies axioms for being a Lit and

then cast to Clause.

Raises:

ValueError: if ``lit_collection`` is an empty collection.

"""

(python3.9) (test/test_cnf.py) <<test_clause>>

def test_clause():

assert clause([1, 2, -3]) == {1, 2, -3} # check for correct type

assert clause([1, -1, 2]) == {1, -1, 2} # +ve and -ve Lits treated as distinct

assert clause([TRUE]) == {TRUE} # TRUE can be part of a Clause

59

assert clause([FALSE]) == {FALSE} # FALSE can be part of a Clause

assert clause([1, TRUE]) == {1, TRUE} # TRUE ≠ 1 in a Clause

assert clause([-1, FALSE]) == {-1, FALSE} # FALSE ≠ -1 in a Clause

assert clause([1, TRUE, FALSE]) == {1, TRUE, FALSE} # TRUE ≠ FALSE

Tests for idempotence

assert clause(clause([1, 2, -3])) == clause([1, 2, -3])

assert clause(clause([TRUE])) == clause([TRUE])

assert clause(clause([FALSE])) == clause([FALSE])

pytest.raises(ValueError, clause, [])

5.3.5 Cnfs

We define a Cnf to be a container of Clauses. The choice of container is
driven by three properties we desire in Cnfs –

1. We do not care for repetitions in the Cnf. This is in keeping with the
identity x ∧ x = x.

2. We also do not care about the ordering of elements in a Cnf. This is
in keeping with the fact that conjunction is commutative.

3. Looking ahead, we will want to put Cnfs inside other containers when
performing calculations. Thus it is desirable that Cnfs be hashable
(and therefore immutable) objects.

These properties are exactly the ones we desired for Clauses, so we similarly
select frozensets as our containers. We define Cnf as a subclass instead of
just a subtype, allowing us to also override its __str__ method to offer more
human-readable printouts.

(python3.9) (cnf.py) <<Cnf>>

class Cnf(frozenset[Clause]): # pylint: disable=too-few-public-methods

"""`Cnf` is a subclass of `frozenset[Clause]`."""

def __str__(self) -> str:

"""Pretty print a Cnf after sorting its sorted clause tuples."""

sorted_cnf: list[Clause]

sorted_cnf = sorted(self, key=lambda clause_: sum([lit < 0 for lit in clause_]))

sorted_cnf = sorted(sorted_cnf, key=len)

60

cnf_tuple: Iterator[str] = map(str, map(clause, sorted_cnf))

return ''.join(cnf_tuple)

We define a constructor function cnf for this class. This function ensures
that a Cnf is always a nonempty collection of Clauses. This constructor
function is also guaranteed to be idempotent.

(python3.9) (cnf.py) <<cnf>>

def cnf(clause_collection: Collection[Collection[int]]) -> Cnf:

<<cnf-docstring>>

if not clause_collection:

raise ValueError(f'Encountered empty input {list(clause_collection)}.')

return Cnf(frozenset(map(clause, clause_collection)))

Finally, we add in a docstring and some unit tests for the constructor
function.

(python3.9) (cnf.py) <<cnf-docstring>>

"""Constructor-function for Cnf type.

By definition, a `Cnf` is a nonempty frozenset of Clauses. This func is idempotent.

Args:

clause_collection (:obj:`Collection[Collection[int]]`): a nonempty collection

(list, tuple, set, frozenset) of nonempty collections of integers or Bools.

Return:

Check that each element in the collection satisfies axioms for being a Clause

and then cast to Cnf.

Raises:

ValueError: if ``clause_collection`` is an empty collection.

"""

(python3.9) (test/test_cnf.py) <<test_cnf>>

def test_cnf():

fs = frozenset # a temporary alias for frozenset

Generic example use-case

assert cnf([[1, 2, -3], [-4, 5]]) == {fs([1, 2, -3]), fs([-4, 5])}

Test for removing repetitions

61

assert cnf([[1, 1, -1], [1, -1]]) == {fs([1, -1])}

Cnf with TRUE and FALSE inside a Clause

assert cnf([[1, 2, TRUE], [3, FALSE]]) == {fs([1, 2, TRUE]), fs([3, FALSE])}

Cnf with a Bool-only Clause

assert cnf([[1, 2, 3], [FALSE], [TRUE]]) \

== {fs([1, 2, 3]), fs([FALSE]), fs([TRUE])}

assert cnf([[TRUE], [TRUE, TRUE]]) == {fs([TRUE])}

Single-Lit-single-Clause Cnf

assert cnf([[1]]) == {fs([1])}

assert cnf([[-1]]) == {fs([-1])}

Test for idempotence.

assert cnf(cnf([[1, 2, 3], [-4, 5]])) == cnf([[1, 2, 3], [-4, 5]])

pytest.raises(ValueError, cnf, [])

pytest.raises(ValueError, cnf, [[]])

5.3.6 Assignments

A truth-assignment is a map that assigns true/false values to variables and
literals. The functions that implement these assignments will be explained
in §5.6, but here we specify the type for assignments.

We make a distinction between full assignments, which assign all (countably-
many) variables to true/false, and partial assignments, which assign only
some finite subset of variables to true/false. The type of full assignments is
best encoded as a function of type N→ Bool, while the partial assignments
are best encoded as a dictionary of Variable keys and Bool values.

For computations, we will be more concerned with partial assignments,
so we denote their type by Assignment and define it to be a type alias
for Mapping from Variables to Bools called Assignment. Note that collec-
tions.abc.Mappings are the abstract base class for python’s dict container
type.

(python3.9) (cnf.py) <<Assignment>>

Assignment = Mapping[Variable, Bool] # defines a type alias

62

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

5.3.7 Helpful constants

We introduce some constants for ease of writing functions in the sections
that follow. However, it should be noted that these constants are intended
for internal use only, and are not to be called by a user of this module. To
enforce this restriction, we name these constants starting with an underscore
to prevent them from being imported in other modules. Further, we wrap
their types in the typing.Final type construct to prevent these values from
being re-assigned or overridden.

(python3.9) (cnf.py) <<constants>>

_TRUE_CLAUSE : Final[Clause] = clause([TRUE])

_FALSE_CLAUSE : Final[Clause] = clause([FALSE])

_TRUE_CNF : Final[Cnf] = cnf([_TRUE_CLAUSE])

_FALSE_CNF : Final[Cnf] = cnf([_FALSE_CLAUSE])

5.4 Basic functions

We define some basic functions for manipulating terms of one type into an-
other –

• In §5.4.1, we will define a function that negates Lits. This is a function
that ties a Lit l to its negation ¬l.

• In §5.4.2, we will define a function that computes the absolute value
of a Lit by returning its underlying Variable (but cast as a Lit). This
is the function that ties the Lits {l,¬l} to their underlying Variable,
denoted |l|.

• In §5.4.3, we will define a function that returns a set of all Lits in a
Cnf. This function will allows us to iterate over, or assign to, every Lit
in the Cnf.

5.4.1 Negation of literals

The negation function sends a literal l to ¬l. For Bools, the negation sends
TRUE to FALSE, and FALSE to TRUE.

63

One important property of the negation function is that it is an involution
since ¬(¬l) = l, for any literal l. It should also be noted that our negation
function has a severely restricted scope compared to the mathematical op-
eration of (¬), since our negation function can only act on Lits and not on
Clauses or Cnfs. The reason for this is that the negation of a Clause is not
in general a Clause, and the negation of a Cnf is not in general a Cnf.

(python3.9) (cnf.py) <<neg>>

def neg(literal: Lit) -> Lit:

<<neg-docstring>>

if literal == TRUE:

return FALSE

if literal == FALSE:

return TRUE

return lit(-literal)

Finally, we add a docstring and some unit tests for the negation function.

(python3.9) (cnf.py) <<neg-docstring>>

"""Negate a Lit.

This function is an involution.

Args:

literal (:obj:`Lit`): a Lit formed from a nonzero integer or from a Bool.

Return:

Return the Lit cast from the negative of ``literal``. If ``literal`` is of

type Bool, then return ``TRUE`` for ``FALSE``, ``FALSE`` for ``TRUE``.

"""

(python3.9) (test/test_cnf.py) <<test_neg>>

def test_neg():

assert neg(lit(1)) == lit(-1)

assert neg(lit(-1)) == lit(1)

assert neg(lit(23)) == lit(-23)

assert neg(TRUE) == FALSE

assert neg(FALSE) == TRUE

Test for involution.

assert neg(neg(lit(1))) == lit(1)

assert neg(neg(lit(-1))) == lit(-1)

64

pytest.raises(ValueError, neg, 0)

5.4.2 Absolute value of literals

The absolute value of a literal l is denoted |l| and is defined as the literal
formed by the underlying variable. For Bools, the absolute value of a Bool
is itself.

(python3.9) (cnf.py) <<absolute_value>>

def absolute_value(literal: Lit) -> Lit:

<<absolute_value-docstring>>

if isinstance(literal, Bool):

return literal

return lit(abs(literal))

We then add a docstring and some unit tests for the function.

(python3.9) (cnf.py) <<absolute_value-docstring>>

"""Unnegated form of a Lit.

This function is idempotent.

Args:

literal (:obj:`Lit`): a Lit formed from a nonzero integer.

Return:

Check that ``literal`` is not of type Bool and then return the absolute value

of ``literal``. If it is of type Bool, then return ``literal`` as is.

"""

(python3.9) (test/test_cnf.py) <<test_absolute_value>>

def test_absolute_value():

assert absolute_value(lit(1)) == lit(1)

assert absolute_value(lit(-1)) == lit(1)

Test for idempotence.

assert absolute_value(absolute_value(lit(1))) == absolute_value(lit(1))

assert absolute_value(absolute_value(lit(-1))) == absolute_value(lit(-1))

Test for Bools

assert absolute_value(TRUE) == TRUE

65

assert absolute_value(FALSE) == FALSE

pytest.raises(ValueError, absolute_value, 0)

5.4.3 Literals in a Cnf

This function returns the set of Lits in a given Cnf. We wish to keep these
sets immutable, and hence we return frozensets instead of regular sets. It
is computed simply by combining all the clauses and putting the Lits thus
gathered into a frozenset.

(python3.9) (cnf.py) <<lits>>

def lits(cnf_instance: Cnf) -> frozenset[Lit]:

<<lits-docstring>>

return frozenset.union(*cnf_instance)

Lastly, we add in a docstring and a unit test for this function.

(python3.9) (cnf.py) <<lits-docstring>>

"""Return frozenset of all Lits that appear in a Cnf.

Args:

cnf_instance (:obj:`Cnf`)

Return:

A frozenset of all lits that appear in a Cnf.

"""

(python3.9) (test/test_cnf.py) <<test_lits>>

def test_lits():

assert lits(cnf([[1, -2],[3, TRUE], [FALSE]])) \

== frozenset({1, -2, 3, TRUE, FALSE})

5.5 Functions for simplification

We define some functions for reducing/simplifying clauses and Cnfs –

• In §5.5.1 we define a function for applying a set of standard tautologies
for simplifying a Clause.

66

• In §5.5.2 we define a function for applying a set of standard tautologies
for simplifying a Cnf.

Both these functions come in use especially after making assignments in
Cnfs. Selectively assigning some Lits to true/false results in Clauses and
Cnfs that contain Bools and can be simplified. The simplification functions
defined in this section help us do just that.

5.5.1 Tautologically reduce clauses

We can reduce a Clause using the following tautologies –

> ∨ c = >, ⊥ ∨ c = c, c ∨ ¬c = >,

where c is a Clause. These are tautologies that feature disjunctions – which
is what bind all the Lits together in a Clause.

We check for these tautologies on a case-by-case basis. It should be noted
that the order in which the cases are checked is important for the correct
behavior of this function.

Furthermore, the input type of this function is abstracted to Set[Lit], of
which set[Lit] and frozenset[Lit] are subtypes. This allows us to use both
sets and frozensets as valid inputs to this function.

Checking of the first two tautologies is straightforward. We describe here
the implementation of how the third tautology (c ∨ ¬c = >) is checked.
Given a Lit-set {li | i ∈ I}, for some finite indexing set I, we check that
{¬li | i ∈ I} ∩ {li | i ∈ I} = ∅. If yes, then we return a Clause formed from
{li | i ∈ I}. If not, then we return the Clause >.

We also ensure that this reduction (and our implementation of it in the
form of this function) are idempotent.

(python3.9) (cnf.py) <<tautologically_reduce_clause>>

def tautologically_reduce_clause(lit_set: Set[Lit]) -> Clause:

<<tautologically_reduce_clause-docstring>>

if TRUE in lit_set:

return _TRUE_CLAUSE

if lit_set == {FALSE}:

return _FALSE_CLAUSE

if FALSE in lit_set:

lit_set -= _FALSE_CLAUSE

67

if not set(map(neg, lit_set)).isdisjoint(lit_set):

return _TRUE_CLAUSE

return clause(lit_set)

Having implemented the function, we now include a docstring and some
unit tests for it.

(python3.9) (cnf.py) <<tautologically_reduce_clause-docstring>>

r"""Reduce a Clause using various tautologies.

The order in which these reductions are performed is important. This function is

idempotent.

Tautologies affecting Clauses:

(⊤ ∨ c = ⊤) (⊥ = ⊥) (⊥ ∨ c = c) (c ∨ ¬c = ⊤),

where `x` is a Clause, `⊤` represents ``TRUE``, `⊥` represents ``FALSE``, and

`∨` is disjunction.

Args:

lit_set (:obj:`Set[Lit]`): an abstract set (a set or a frozenset) of Lits.

Return:

The Clause formed by performing all the above-mentioned tautological reductions.

"""

(python3.9) (test/test_cnf.py) <<test_tautologically_reduce_clause>>

def test_tautologically_reduce_clause():

trc = tautologically_reduce_clause # local alias for long function name

assert trc(clause([lit(1), TRUE])) == clause([TRUE])

assert trc(clause([FALSE])) == clause([FALSE])

assert trc(clause([lit(1), FALSE])) == clause([lit(1)])

assert trc(clause([lit(1), lit(-1)])) == clause([TRUE])

Test for idempotence

_clause = clause([lit(1), lit(-2), lit(3), lit(3)])

assert trc(trc(_clause)) == trc(_clause)

pytest.raises(ValueError, trc, set())

68

5.5.2 Tautologically reduce Cnfs

We can reduce a Cnf using the following tautologies –

x ∧ ⊥ = ⊥, > ∧ x = x,

where x is a Cnf. These are tautologies that feature conjunctions – which is
what bind all the Clauses together in a Cnf.

We check for these tautologies on a case-by-cases basis. It should be noted
that the order in which the cases are checked is important for the correct
behavior of this function.

The input type is abstracted to Set[Set[Lit]]. This means the input can
be one of the following types –

1. a frozenset of frozenset of Lits – this is the preferred type and all other
inputs will be converted to this type by the function.

2. a frozenset of set of Lits – this form is not possible because a frozenset
will only accept entries of hashable type.

3. a set of frozenset of Lits

4. a set of set of Lits – this form is not possible because a set will only
accept entries hashable type.

Given an input of the right type, the function first reduces all its clauses
using the tautologically_reduce_clause function. In the case when the
clause set contains the TRUE Clause, we remove the TRUE clause and call
our function recursively on the reduced clause-set. This recursive call is
guaranteed to terminate because we always apply it to a clause set of smaller
length each time.

Lastly, we note that this function is idempotent.

(python3.9) (cnf.py) <<tautologically_reduce_cnf>>

def tautologically_reduce_cnf(clause_set: Set[Set[Lit]]) -> Cnf:

<<tautologically_reduce_cnf-docstring>>

clause_set_reduced: set[Clause]

clause_set_reduced = set(map(tautologically_reduce_clause, clause_set))

if _FALSE_CLAUSE in clause_set_reduced:

return _FALSE_CNF

69

if clause_set_reduced == _TRUE_CNF:

return _TRUE_CNF

if _TRUE_CLAUSE in clause_set_reduced:

return tautologically_reduce_cnf(clause_set_reduced - _TRUE_CNF)

return cnf(clause_set_reduced)

Below, we specify the docstring and some unit tests for this function.

(python3.9) (cnf.py) <<tautologically_reduce_cnf-docstring>>

r"""Reduce a Cnf using various tautologies.

The order in which these reductions are performed is important. This

function is idempotent. This is a recursive function that is guaranteed to

terminate.

Tautologies affecting Cnfs:

(x ∧ ⊥ = ⊥) (⊤ = ⊤) (⊤ ∧ x = x),

where `x` is a Cnf, `⊤` represents ``TRUE``, `⊥` represents ``FALSE``, and `∧`

is conjunction.

Args:

clause_set (:obj:`Set[Set[Lit]]`): an abstract set (set or frozenset) of

abstract sets of Lits.

Return:

The Cnf formed by first reducing all the clauses tautologically and then

performing all the above-mentioned tautological reductions on the Cnf

itself.

"""

(python3.9) (test/test_cnf.py) <<test_tautologically_reduce_cnf>>

def test_tautologically_reduce_cnf():

trc = tautologically_reduce_cnf # local alias for long function name

cases where Clause reductions appear within Cnf reductions

assert trc(cnf([[1, TRUE], [1, 2]])) == cnf([[1, 2]])

assert trc(cnf([[FALSE], [1, 2]])) == cnf([[FALSE]])

assert trc(cnf([[1, FALSE], [1, 2]])) == cnf([[1], [1, 2]])

assert trc(cnf([[1, -1], [1, 2]])) == cnf([[1, 2]])

cases where we might have two simultaneous clause reductions

assert trc(cnf([[1, TRUE], [FALSE]])) == cnf([[FALSE]])

assert trc(cnf([[1, TRUE], [1, FALSE]])) == cnf([[1]])

assert trc(cnf([[1, TRUE], [1, -1]])) == cnf([[TRUE]])

70

assert trc(cnf([[FALSE], [1, FALSE]])) == cnf([[FALSE]])

assert trc(cnf([[FALSE], [1, -1]])) == cnf([[FALSE]])

assert trc(cnf([[1, FALSE], [1, -1]])) == cnf([[1]])

cases where we might have a cnf-related tautology

assert trc(cnf([[1], [FALSE]])) == cnf([[FALSE]])

assert trc(cnf([[TRUE]])) == cnf([[TRUE]])

assert trc(cnf([[1], [TRUE]])) == cnf([[1]])

Test for idempotence.

_cnf = cnf([[lit(1), lit(2)], [lit(-2)]])

assert trc(trc(_cnf)) == trc(_cnf)

pytest.raises(ValueError, trc, set())

pytest.raises(ValueError, trc, frozenset())

5.6 Functions for assignment

We define functions for applying truth-assignments to Lits, Clauses, and
Cnfs.

• In §5.6.1 we define a function that assigns a given truth value to a
variable in a Lit.

• In §5.6.2 we define a function that assigns a given truth value to a
variable in a Clause.

• In §5.6.3 we define a function that assigns a given truth value to a
variable in a Cnf.

• In §5.6.4 we define a function that applies an Assignment to Cnf.

We refer to the <<example>> code-block in §5.2 for a demonstration of the
usage of the assign function defined in §5.6.4.

Throughout this section, we will denote the assignment of a to an object
x by the notation x[a].

71

5.6.1 Assign to variable in a literal

For a literal l and a variable v, this function encodes the result that the value
l[v], i.e. the value obtained by setting v to > is,

• >, if l = v,

• ⊥, if l = ¬v,

• l, otherwise.

This function is idempotent because l[v][v] = l[v], for every literal l and
every variable v.

(python3.9) (cnf.py) <<assign_variable_in_lit>>

def assign_variable_in_lit(literal: Lit, variable_: Variable, boolean: Bool) -> Lit:

<<assign_variable_in_lit-docstring>>

if literal == variable_:

return boolean

if neg(literal) == variable_:

return neg(boolean)

return literal

We complete the definition by adding in a docstring and some unit-tests
for the function.

(python3.9) (cnf.py) <<assign_variable_in_lit-docstring>>

"""Assign Bool value to a Variable if present in Lit.

Replace all instances of ``variable_`` and its negation with ``boolean``

and its negation respectively. Leave all else unchanged. This function is

idempotent.

Args:

literal (:obj:`Lit`)

variable_ (:obj:`Variable`)

boolean (:obj:`Bool`): either ``TRUE`` or ``FALSE``.

Return:

Lit formed by assigning ``variable_`` to ``boolean`` in ``literal``.

"""

72

(python3.9) (test/test_cnf.py) <<test_assign_variable_in_lit>>

def test_assign_variable_in_lit():

avil = assign_variable_in_lit # local alias for long function name

assert avil(1, 1, TRUE) == TRUE

assert avil(1, 1, FALSE) == FALSE

assert avil(-1, 1, TRUE) == FALSE

assert avil(-1, 1, FALSE) == TRUE

assert avil(1, 2, TRUE) == 1

assert avil(TRUE, 1, TRUE) == TRUE

assert avil(FALSE, 1, TRUE) == FALSE

Test for idempotence

assert avil(avil(1, 1, TRUE), 1, TRUE) == avil(1, 1, TRUE)

assert avil(avil(-1, 1, TRUE), 1, TRUE) == avil(-1, 1, TRUE)

5.6.2 Assign to variable in a clause

Next, we define a function that assigns variables to Bools wherever the vari-
able occurs in a clause. The function carries out the following computation
–

c[v] = (l1 ∨ l2 ∨ · · · ∨ ln)[v],

= l1[v] ∨ l2[v] ∨ · · · ∨ ln[v],

where c is a clause, v is a variable, and each li is a literal.
In the implementation of the function, we use functools.partial to de-

fine assign_variable to be the partial function assign_variable_in_lit(__,

variable_, boolean). This partial function takes a single Lit as an input
while freezing the other arguments in place.

We note also that this function is idempotent in the first argument. Mean-
ing, for a fixed variable and Bool value, applying this function twice to the
same Clause is the same as applying it only once.

(python3.9) (cnf.py) <<assign_variable_in_clause>>

def assign_variable_in_clause(lit_set: Set[Lit], variable_: Variable, boolean: Bool) \

-> Clause:

<<assign_variable_in_clause-docstring>>

assign_variable: Callable[[Lit], Lit]

assign_variable = ft.partial(assign_variable_in_lit, variable_=variable_,

73

boolean=boolean)

mapped_lits: set[Lit]

mapped_lits = set(map(assign_variable, lit_set))

return tautologically_reduce_clause(mapped_lits)

We now add in a docstring and some unit-tests for the function we just
defined.

(python3.9) (cnf.py) <<assign_variable_in_clause-docstring>>

"""Assign Bool value to a Variable if present in Clause.

Replace all instances of ``variable_`` and its negation in ``lit_set`` with

``boolean`` and its negation respectively. Leave all else unchanged.

Perform tautological reductions on the Clause before returning results.

This function is idempotent.

Args:

lit_set (:obj:`Set[Lit]`): an abstract set (set or frozenset) of Lits.

variable_ (:obj:`Variable`): a variable instance

boolean (:obj:`Bool`): either ``TRUE`` or ``FALSE``.

Return:

Tautologically-reduced Clause formed by assigning ``variable_`` to ``boolean`` in

``lit_set``.

"""

(python3.9) (test/test_cnf.py) <<test_assign_variable_in_clause>>

def test_assign_variable_in_clause():

avic = assign_variable_in_clause # local alias for long function name

assert avic(clause([1, -2]), 1, TRUE) == {TRUE}

assert avic(clause([1, -2]), 1, FALSE) == {-2}

assert avic(clause([1, -2, -1]), 1, TRUE) == {TRUE}

assert avic(clause([1, -2, -1]), 1, FALSE) == {TRUE}

assert avic(clause([1, -2]), 2, TRUE) == {1}

assert avic(clause([1, -2]), 2, FALSE) == {TRUE}

assert avic(clause([1, -2, -1]), 2, TRUE) == {TRUE}

assert avic(clause([1, -2, -1]), 2, FALSE) == {TRUE}

Test for idempotence

_clause: Clause = clause([lit(1), lit(-2), lit(-1)])

_var: Variable = variable(2)

74

assert avic(avic(_clause, _var, FALSE), _var, FALSE) == avic(_clause, _var, FALSE)

pytest.raises(ValueError, assign_variable_in_clause, [], 1, TRUE)

5.6.3 Assign to variable in a Cnf

We define a function that assigns variables to Bools whenever the variable
occurs in a Cnf. This function carries out the following computation –

x[v] = (c1 ∧ c2 ∧ · · · ∨ cn)[v],

= c1[v] ∧ c2[v] ∧ · · · ∧ cn[v],

where x is a Cnf, v is a variable, and each ci is a clause.
In the implementation of the function, we use functools.partial to define

assign_variable to be the partial function assign_variable_in_clause(__,

variable_, boolean). This partial function takes a single Clause as an input
while freezing the other arguments in place.

We note also that this function is idempotent in the first argument. Mean-
ing, for a fixed variable and Bool value, applying this function twice to the
same Cnf is the same as applying it only once.

(python3.9) (cnf.py) <<assign_variable_in_cnf>>

def assign_variable_in_cnf(clause_set: Set[Set[Lit]], variable_: Variable,

boolean: Bool) -> Cnf:

<<assign_variable_in_cnf-docstring>>

assign_variable: Callable[[Clause], Clause]

assign_variable = ft.partial(assign_variable_in_clause,

variable_=variable_,

boolean=boolean)

mapped_clauses: set[Clause]

mapped_clauses = set(map(assign_variable, clause_set))

return tautologically_reduce_cnf(mapped_clauses)

We now add in a docstring and some unit-tests for the function.

(python3.9) (cnf.py) <<assign_variable_in_cnf-docstring>>

"""Assign Bool value to a Variable if present in Cnf.

75

Replace all instances of ``variable_`` and its negation in ``clause_set``

with ``boolean`` and its negation respectively. Leave all else unchanged.

Perform tautological reductions on the Cnf before returning results. This

function is idempotent.

Args:

clause_set (:obj:`Set[Set[Lit]]`): an abstract set (set or frozenset) of

abstract sets of Lits.

variable_ (:obj:`Variable`)

boolean (:obj:`Bool`): either ``TRUE`` or ``FALSE``.

Return:

Tautologically-reduced Cnf formed by assigning ``variable_`` to ``boolean`` in

``clause_set``.

"""

(python3.9) (test/test_cnf.py) <<test_assign_variable_in_cnf>>

def test_assign_variable_in_cnf():

avic = assign_variable_in_cnf # local alias for long function name

assert avic(cnf([[1, -2], [-1, 3]]), 1, TRUE) == cnf([[3]])

assert avic(cnf([[1, -2], [-1, 3]]), 1, FALSE) == cnf([[-2]])

Test for idempotence.

_cnf = cnf([[1, -2], [-1, 3]])

assert avic(avic(_cnf, 1, FALSE), 1, FALSE) == avic(_cnf, 1, FALSE)

pytest.raises(ValueError, avic, [[]], 1, TRUE)

5.6.4 Assign

We define a function that applies a (possibly partial) Boolean assignment to
a given Cnf. This function carries out the following computation –

x[A] = x[{l1, . . . , ln}] = (((x[l1])[l2]) · · ·)[ln],

where x is a Cnf, A is an assignment, and each li is a literal.
For positive literals in the assignment, we set the underlying variable to

true using assign_variable_in_cnf. For negative literals in the assignment,
we use the same function to set the underlying variable to false.

76

We note that this function is idempotent in the first argument (i.e. keeping
the assignment fixed, applying this function twice to a Cnf is the same as
applying it once).

A complete assignment might return a trivial Cnf value (a true or false
Cnf). However, in general, since the assignments can be partial, the function
can return a nontrivial Cnf instead.

(python3.9) (cnf.py) <<assign>>

def assign(cnf_instance: Cnf, assignment: Assignment) -> Cnf:

<<assign-docstring>>

cnf_copy: frozenset[Clause] = cnf_instance.copy()

for variable_, boolean in assignment.items():

cnf_copy = assign_variable_in_cnf(cnf_copy, variable_, boolean)

return tautologically_reduce_cnf(cnf_copy)

We add a docstring and some unit-tests for the function.

(python3.9) (cnf.py) <<assign-docstring>>

"""Assign Bool values to Variables if present in Cnf.

For each Variable (key) in ``assignment``, replace the Variable and its

negation in ``cnf_instance`` using the Bool (value) in ``assignment``. The

final output is always tautologically reduced. This function is idempotent.

Args:

cnf_instance (:obj:`Cnf`)

assignment (:obj:`Assignment`): a dict with keys being Variables to be

replaced and values being Bools that the Variables are to be assigned

to. The ``assignment`` dict need not be complete and can be partial.

Edge case:

An empty assignment dict results in ``cnf_instance`` simply getting

topologically reduced.

Return:

Tautologically-reduced Cnf formed by replacing every key in the

``assignment`` dict (and those keys' negations) by corresponding Bool values.

"""

(python3.9) (test/test_cnf.py) <<test_assign>>

def test_assign():

assert assign(cnf([[1, -2], [-1, 3]]), {1: TRUE}) == cnf([[3]])

assert assign(cnf([[1, -2], [-1, 3]]), {1: TRUE, 2: FALSE}) == cnf([[3]])

77

assert assign(cnf([[1, -2], [-1, 3]]),

{1: TRUE, 2: FALSE, 3: FALSE}) == cnf([[FALSE]])

assert assign(cnf([[TRUE]]), {1: TRUE}) == cnf([[TRUE]])

assert assign(cnf([[TRUE]]), {}) == cnf([[TRUE]])

assert assign(cnf([[FALSE]]), {}) == cnf([[FALSE]])

assert assign(cnf([[1]]), {}) == cnf([[1]])

Test for idempotence.

_cnf = cnf([[1, -2], [-1, 3]])

assert assign(assign(_cnf, {1: TRUE}), {1: TRUE}) \

== assign(_cnf, {1: TRUE})

pytest.raises(ValueError, assign, [[]], {1: TRUE})

5.7 Standalone script run commands

We now add in some commands that will be run when the module is called
from the command line by a user, say by invoking python3 -m cnf.py at
the terminal prompt. The purpose of these lines is to test that the user
has installed the module correctly and it also serves to demonstrate the
construction of a Cnf.

To invoke these lines only when the script is run as stand-alone, and not
during regular imports, we put these lines in a if __name__ = ’main’= block.

We use a logger to send messages and output to stdout.

(python3.9) (cnf.py) <<standalone_run_commands>>

logger.info('Cnfs can be constructed using the cnf() function.')

logger.info('>>> cnf([[1, -2], [3, 500]])')

logger.info(cnf([[1, -2], [3, 500]]))

5.8 Tangling

We now tangle all the code blocks defined in this chapter into a single file
(cnf.py) following the overview laid out in §5.2.2. Using the source file for
this chapter, the tangling can be carried out by running the following script

(sh) (scratch) <<tangle>>

cp subchapter_cnf.org cnf.org # create a temp file

cnf.org -> cnf.py + test_cnf.py (tangle)

78

emacs --batch cnf.org -f org-babel-tangle --kill

black cnf.py test/test_cnf.py # auto-format for PEP8 compliance

rm cnf.org # remove temp file

We similarly tangle all the unit-tests into a single file (test/test_cnf.py)
using the following layout.

(python3.9) (test/test_cnf.py) <<test_cnf.py-full>>

#!/usr/bin/env python3.9

import pytest

from cnf import *

<<test_variable>>

<<test_Bool>>

<<test_lit>>

<<test_clause>>

<<test_cnf>>

<<test_neg>>

<<test_absolute_value>>

<<test_lits>>

<<test_tautologically_reduce_clause>>

<<test_tautologically_reduce_cnf>>

<<test_assign_variable_in_lit>>

<<test_assign_variable_in_clause>>

<<test_assign_variable_in_cnf>>

<<test_assign>>

Finally, we can run all the tests on module functions as follows –

(sh) (scratch) <<run-tests>>

python3 -m mypy cnf.py # static typechecking of code

python3 -m py.test # run all the unit tests

python3 -m cnf.py # run the module as a stand-alone script

5.9 Concluding remarks

In this chapter we present the first of several modules from the graphsat

Python package. The interested reader can check out a more complete imple-
mentation of all the other modules at the GitHub repository vaibhavkarve/graphsat.

79

https://github.com/vaibhavkarve/graphsat

Chapter 6

3GraphSAT and computational results

In this chapter, we summarize some of the key findings enabled by the local
rewriting theorem from §4.4, and by the graphsat python package introduced
in §5. This experimental style of math combines programming and proofs
to classify graphs, hypergraphs, and infinite graphs as totally satisfiable or
unsatisfiable. We use programming for number-crunching and dealing with
the vast amount of cases that need to be checked in each calculation. For
pattern-matching in graphs, we often also rely on the human brain’s ability
to spot invariants when shown a list of graph drawings.

In §6.1 we list tables of standard graph disjunctions that one may encoun-
tered when carrying out local graph rewriting calculations. These tables are
all generated using the graph_or function in the operations.py module. In
§6.2 we then use these disjunction results to derive graph reduction rules –
global rewrites that do not affect the satisfiability of a graph. In §6.3, we
describe an ongoing effort to describe the criterion for hypergraph minimality
taking into account a growing list of graph reduction rules.

In §§6.4–6.5, we present computationally obtained satisfiability and un-
satisfiability results on mixed hypergraphs and triangulations. The choice of
structures we present in those sections is less systematic and more driven by
ease of calculation.

In §6.6 we discuss the graph decision problem as it relates to infinite graphs.
We also present some examples of totally satisfiable infinite graphs. In §6.7
we discuss the logistical setup used for carrying out all the calculations in this
chapter, along with a mention of the challenges posed by continuing these
computations on bigger graphs in the face of exponentially more cases that
need checking.

80

6.1 Standard graph disjunctions

Essential to carrying out local graph rewriting is the calculation of graph
disjunctions of the form gi ∨ hi. A graph disjunction, even if we start with
gi and hi being graphs, frequently yields a set of Cnfs that might not be a
graph. For example,

a ∨ a = {x ∨ y | (x, y : Cnf) ∈ a}

= {a ∨ a, a ∨ a, a ∨ a, a ∨ a}

= {a, a, >}

We note that these three Cnfs do not belong to the set corresponding to
any single graph because the Cnfs do not have the same vertex set. The
Cnfs a and a have a vertex set of a; the true Cnf has an empty vertex set.
Nevertheless, we can write it as a union of graphs. We can write a ∨ a =

> ∪ a.
Nevertheless, we cannot always write a disjunction even as a union of

graphs. For example,

a∨(a ∧ b) = {a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b),

a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b), a ∨ (a ∧ b)}

= {a ∧ (a ∨ b), a ∧ (a ∨ b), a ∨ b, a ∨ b,

a ∨ b, a ∨ b, a ∧ (a ∨ b), a ∧ (a ∨ b)}

= ab ∪ {a ∧ (a ∨ b), a ∧ (a ∨ b), a ∧ (a ∨ b), a ∧ (a ∨ b)}

Although the remaining Cnfs all belong to the same graph, namely a ∧ ab,
we note that we do not have the complete set. For example, we are missing
the Cnf a∧ (a∨ b). Hence we cannot write a∨(a ∧ b) = ab ∪ a ∧ ab. The
best we can do is –

ab ⊂ a∨(a ∧ b) ⊂ ab ∪ a ∧ ab.

These subset-superset pairs give us a lower and upper bound for the set
in the middle. The utility of these subset-superset pairs becomes apparent
when we view them in the context of satisfiability statuses. In the following

81

equation, let s an arbitrary graph. Then, we have –

γ(s ∧ ab)← γ(s∧(a∨(a ∧ b)))← γ(s ∧ ab) ∧ γ(s ∧ a ∧ ab).

This means that if s ∧ ab is unsatisfiable, then is s∧(a∨(a ∧ b)) too. On
the other hand, if s ∧ ab is totally satisfiable, the by checking if s ∧ a ∧ ab

is also totally satisfiable, we can conclude that s∧(a∨(a ∧ b)) is totally
satisfiable as well.

Below, we include tables of such graph disjunctions. These tables come
in handy performing local rewrites, as seen in §6.2. The first two tables list
graph disjunctions that can be written exactly as a union of graphs; the third
table lists graph disjunctions that can only be listed as a subset-superset pair.

Table 6.1: Graph
disjunctions where size of
h1 + size of h2 is 2.

h1 h2 h1 ∨ h2

a ∨ a = > ∪ a

a ∨ b = ab

a ∨ bc = abc

a ∨ ab = > ∪ ab

ab ∨ cd = abcd

ab ∨ ac = > ∪ abc

ab ∨ ab = > ∪ ab

Table 6.2: Graph
disjunctions where size of h1

+ size of h2 is 3.

h1 h2 h1 ∨ h2

a ∨ a2 = a

a ∨ b2 = a

a ∨ (ab)2 = > ∪ a ∪ ab

a ∨ (b ∧ ab) = a ∪ ab

ab ∨ c2 = ab

ab ∨ (a ∧ c) = ab ∪ abc

ab ∨ a2 = ab

ab ∨ (a ∧ b) = > ∪ ab

ab ∨ (c ∧ ac) = ab ∪ abc

ab ∨ (c ∧ ab) = ab ∪ abc

ab ∨ (a ∧ cd) = ab ∪ abcd

ab ∨ (a ∧ ac) = > ∪ ab ∪ abc

ab ∨ (a ∧ bc) = > ∪ ab ∪ abc

ab ∨ (a ∧ ab) = > ∪ ab

ab ∨ (ab ∧ cd) = ab ∪ abcd

ab ∨ (ab ∧ ac) = > ∪ ab ∪ abc

ab ∨ (ac)2 = > ∪ ab ∪ abc

ab ∨ (ac ∧ bc) = > ∪ ab ∪ abc

ab ∨ (ab)2 = > ∪ ab

The above tables show that the possible graph disjunctions grow quickly
with the edges participating in the disjunction. This is why we stop at
a maximum of three edges. For calculating the graph disjunction of more

82

Table 6.3: Subset-superset pairs for graph disjunctions where size of h1 +
size of h2 is at most 3.

Subset h1 h2 Superset
a ∨ (b ∧ c) ⊂ (ab ∧ ac)

ab ⊂ a ∨ (a ∧ b) ⊂ ab ∪ (a ∧ ab)
a ∨ (b ∧ cd) ⊂ (ab ∧ acd)

abc ⊂ a ∨ (a ∧ bc) ⊂ abc ∪ (a ∧ abc)
ab ⊂ a ∨ (b ∧ ac) ⊂ ab ∪ (ab ∧ ac)

a ∨ (b ∧ bc) ⊂ (ab ∧ abc)
> ∪ a ∪ ab ⊂ a ∨ (a ∧ ab) ⊂ > ∪ a ∪ ab ∪ (a ∧ ab)

a ∨ (bc ∧ de) ⊂ (abc ∧ ade)
a ∨ (bc ∧ bd) ⊂ (abc ∧ abd)
a ∨ (bc)2 ⊂ (abc)2

acd ⊂ a ∨ (ab ∧ cd) ⊂ acd ∪ (ab ∧ acd)
ab ∪ abc ⊂ a ∨ (ab ∧ bc) ⊂ ab ∪ abc ∪ (ab ∧ abc)

> ∪ ab ∪ ac ⊂ a ∨ (ab ∧ ac) ⊂ > ∪ ab ∪ ac ∪ (ab ∧ ac)
ab ∨ (c ∧ d) ⊂ (abc ∧ abd)
ab ∨ (c ∧ de) ⊂ (abc ∧ abde)

abc ⊂ ab ∨ (c ∧ cd) ⊂ abc ∪ (abc ∧ abcd)
abc ⊂ ab ∨ (c ∧ ad) ⊂ abc ∪ (abc ∧ abd)

ab ∨ (cd ∧ ef) ⊂ (abcd ∧ abef)
ab ∨ (cd ∧ ce) ⊂ (abcd ∧ abce)
ab ∨ (cd)2 ⊂ (abcd)2

abcd ⊂ ab ∨ (cd ∧ ac) ⊂ abcd ∪ (abc ∧ abcd)
> ∪ abc ∪ abd ⊂ ab ∨ (ac ∧ ad) ⊂ > ∪ abc ∪ abd ∪ (abc ∧ abd)
> ∪ abc ∪ abd ⊂ ab ∨ (ac ∧ bd) ⊂ > ∪ abc ∪ abd ∪ (abc ∧ abd)

abcd ⊂ ab ∨ (ac ∧ cd) ⊂ abcd ∪ (abc ∧ abcd)

83

edges, we can always use the graph_or function from the operations module
on each individual disjunction.

6.2 Graph reduction rules

This section states some global graph rewriting rules that leave the satis-
fiability status of a graph unchanged. We call these graph reduction rules.
Using the graph local rewriting theorem, we prove the invariance of graph-
sat under these reduction rules.

These reduction rules yield a set of simple search-and-replace rules that
can be deployed computationally to simplify a graph, make it smaller, and
then subject it to a graph-satchecker.

In the following subsections, we will always label the sphere of the graph
g at vertex 1 as s. Since s has no edges incident on 1, when decomposing
locally at that vertex, we can always write s[1] = s.

6.2.1 Deleting leaf vertices

We start by looking at vertices of degree 1 (not counting edge multiplicities),
i.e. at leaf vertices. We prove that leaf vertices can be deleted without
affecting the satisfiability status of a graph. First, we prove that we can
delete a leaf vertex that has only edges of size 1 of any multiplicity incident
on it.

For a multiplicity 1 edge, we get s ∧ 12 ∼ s.
For multiplicity 2 edges, we get s ∧ 122 ∼ s∧(2 ∨ 2) = s∧(> ∪ 2) =

s ∧ 2.
For multiplicity 3 edges, we get s ∧ 123 ∼ s∧(2 ∨ 22) ∼ s∧(2 ∨ ⊥) =

s ∧ 2.
For multiplicity 4 edges, we get s ∧ 124 ∼ s∧(2 ∨ 23) ∪ s∧(22∨22) =

s∧(2 ∨⊥) ∪ s∧(⊥ ∨⊥) ∼ s ∧ 2 ∪⊥ ∼ ⊥.
All the graph disjunctions used in the above calculation can be found

in Table 6.1. We can write these results more concisely as s ∧ 12n ∼
s ∧ 2bn/2c, ∀n ∈ N, such that 22 ∼ ⊥.

Next, we show that a leaf vertex incident only on hyperedges can be rewrit-
ten to edges of size 2. For a leaf vertex 1, incident on a hyperedge of multi-

84

plicity 1, we get the reduction s ∧ 1231 ∼ s.
For a hyperedge of multiplicity 2, we get s ∧ 1232 ∼ s∧(23 ∨ 23) =

s∧(> ∪ 23).
For a hyperedge of multiplicity 3, we get s ∧ 1233 ∼ s∧(23 ∨ 232) =

s∧(23 ∪>) = s ∧ 23 ∪ s = s ∧ 23.
For a hyperedge of multiplicity 4, we get s∧(123)4 ∼ s∧(23 ∨ 233) ∪

s∧(232∨232) = s∧(23 ∪>) ∪ s∧(232 ∪ 23 ∪>) = s ∧ 232 ∪ s ∧ 23 ∪ s =

s ∧ 232.
Some of the graph disjunctions in the above calculations can be found in

Table 6.2. The remaining disjunctions are computed using the
operations.graph_or function from the graphsat package. Code-snippets
and their outputs are provided below for reference.

(python3.9) (scratch) <<calculation1>>

import cnf, mhgraph

from operations import graph_or

g1 = mhgraph.mhgraph([[2, 3]])

g3 = mhgraph.mhgraph([[2, 3]]*3)

for x in graph_or(g1, g3):

print(x)

Output 23 ∨ 233:

(<Bool: TRUE>)

(2,3)

(2,-3)

(-2,3)

(-2,-3)

(python3.9) (scratch) <<calculation2>>

import cnf, mhgraph

from operations import graph_or

g2 = mhgraph.mhgraph([[2, 3]]*2)

for x in graph_or(g2, g2):

print(x)

Output 232∨232:

85

(<Bool: TRUE>)

(2,3)

(2,-3)

(-2,3)

(-2,-3)

(2,3)(2,-3)

(2,3)(-2,3)

(2,3)(-2,-3)

(2,-3)(-2,3)

(2,-3)(-2,-3)

(-2,3)(-2,-3)

Looking at the pattern, we can derive similar rules for higher multiplicities:

• s∧(123)5 ∼ s ∧ 232

• s∧(123)6 ∼ s ∧ 233

• s∧(123)7 ∼ s ∧ 233

• s∧(123)8 ∼ s ∧ 234 ∼ ⊥

In general, when rewriting locally at the vertex 1, we can write ∀n ∈ N,
s ∧ 123n ∼ s ∧ 23bn/2c, such that 234 ∼ ⊥.

6.2.2 Smoothing edges

Having dealt with leaf vertices (i.e. vertices of degree 1), we now consider
vertices of degree 2. Edges and hyperedges incident at such vertices can be
“smoothed” without affecting the satisfiability status of a graph. We call
these operations smoothing because each operation results in graphs with
fewer bends (by having fewer vertices).

We can smoothe out the intersection of two edges as s ∧ 12 ∧ 13 ∼
s∧(2 ∨ 3) = s ∧ 23. Similarly, we can smoothe out the intersection of two
hyperedges sharing a common edge as s ∧ 123 ∧ 124 ∼ s∧(23 ∨ 24) ∼
s∧(> ∪ 234) = s ∪ s ∧ 234 ∼ s ∧ 234.

Smoothing out the intersection of two hyperedges sharing a common vertex
results in a size 4 hyperedge – s ∧ 123 ∧ 145 ∼ s∧(23 ∨ 45) = s ∧ 2345.
Smoothing at an edge-hyperedge pair with a common vertex yields s ∧ 12 ∧ 134 ∼
s∧(2 ∨ 34) = s ∧ 234.

86

6.2.3 Tucking edges

We now prove a series of reduction rules that allow deletion of degree 2 or
higher vertices, resulting in graphs with fewer edges. Visually, these opera-
tions look like tucking-in of an extended fin of the graph.

Tucking-in at an edge-hyperedge intersection incident at a common edge
yields s ∧ 12 ∧ 123 ∼ s∧(2 ∨ 23) = s∧(23 ∪>) = s ∧ 23 ∪ s ∼ s ∧ 23.

Degree 3 intersections have reduction rules for the following cases –

1. A hyperedge with an edge incident on two of its three sides, i.e. s ∧ 12 ∧ 13 ∧ 123.

2. A hyperedge of multiplicity 2, with an edge incident on one of its sides,
i.e. s ∧ 12 ∧ 1232.

3. A hyperedge with an edge of multiplicity two incident on one of its
sides, i.e. s ∧ 122∧123.

For instance 1, we get –

s ∧ 12 ∧ 13 ∧ 123 ∼ s∧(2 ∧ 23 ∨ 3) ∪ s∧(3 ∧ 23 ∨ 2) ∪ s∧(2 ∧ 3 ∨ 23)

∼ s∧(3 ∪ 23) ∪ s∧(2 ∪ 23) ∪ s∧(23 ∪ >)

= s ∪ s ∧ 2 ∪ s ∧ 3 ∪ s ∧ 23

∼ s ∧ 2 ∪ s ∧ 3 ∪ s ∧ 23

∼ s ∧ 2 ∪ s ∧ 3

For instance 2, we get –

s ∧ 12 ∧ 1232 ∼ s∧(2 ∨ 232) ∪ s∧(23 ∨ 2 ∧ 23)

∼ s∧(> ∪ 2 ∪ 23) ∪ s∧(> ∪ 23)

= s ∪ s ∧ 2 ∪ s ∧ 23

∼ s ∧ 2 ∪ s ∧ 23

∼ s ∧ 2

For instance 3, we get s ∧ 122∧123 ∼ s∧(2 ∨ 2 ∧ 23) ∪ s∧(23 ∨ 22).
Since we have (> ∪ 2 ∪ 23) ⊂ 2 ∨ 2 ∧ 23 ⊂ (> ∪ 2 ∪ 23 ∪ 2 ∧ 23), we can
write –

s∧(>∪2∪23)∪s∧23 ⊂ s ∧ 122∧123 ⊂ s∧(>∪2∪23∪2 ∧ 23)∪s∧23

87

Applying the γ graph-satisfiability map, yields –

γ(s∧>∪s∧2∪s∧23) ← γ(s ∧ 122∧123) ← γ(s∧>∪s∧2∪s∧23∪s∧2 ∧ 23)

This can in turn be simplified to –

γ(s∧2) ← γ(s ∧ 122∧123) ← γ(s∧2 ∧ 23)

This last result can be seen as a partial rewrite rule owing to the presence of
the subset-superset pair.

6.2.4 Opening a triple-intersection vertex

We can replace a three-hyperedge intersection incident on a common vertex
with three simple edges on the boundary. The proof of this reduction rule is
as follows –

s ∧ 123 ∧ 124 ∧ 134

∼ s∧(23 ∨ 24 ∧ 34) ∪ s∧(24 ∨ 23 ∧ 34) ∪ s∧(34 ∨ 23 ∧ 24)

= s∧(> ∪ 23 ∪ 234) ∪ s∧(> ∪ 24 ∪ 234) ∪ s∧(> ∪ 34 ∪ 234)

= s ∪ s ∧ 23 ∪ s ∧ 24 ∪ s ∧ 34 ∪ s ∧ 234

∼ s ∧ 23 ∪ s ∧ 24 ∪ s ∧ 34

6.3 Minimality of unsatisfiable hypergraphs

In the case of multi-graphs, we showed that satisfiability is invariant under
homeomorphisms. We could then define a minimal unsatisfiable multi-graph
to be one which is unsatisfiable, with every proper topological minor being
totally satisfiable.

In the case of multi-hypergraphs, we have instead a list of reduction rules.
The reduction rules make it harder to define minimality owing to several
independent reasons –

1. Given a list of reduction rule, it is a computationally expensive to check
if any of these rules apply to a given graph.

88

2. For most reduction rule, the right side (which is what we obtain after
rewriting) is not a single graph – it is instead a union of graphs. This
means that any notion of minimality for hypergraphs must incorporate
the effect of rewriting as a union of graphs instead of a single graph.

3. Our list of reduction rules is not complete. We may find more reduc-
tion rules by rewriting at higher degree vertices and carrying out longer
computations. Each additional reduction rule could make the minimal-
ity criterion stricter and would shrink the size of any minimal set of
unsatisfiable hypergraphs.

4. Uniqueness of the minimal set of unsatisfiable hypergraphs is not guar-
anteed owing to the complexity of the reduction rules.

6.4 Computational results concerning mixed
hypergraphs

In this section we provide a list of known totally satisfiable and unsatisfiable
mixed-hypergraphs i.e. hypergraphs which have edges of size 1, 2 or 3. List
of candidate hypergraphs are generated programmatically using SageMath’s
nauty package [15], which has various tools for generating canonically-labeled,
non-isomorphic graphs with certain properties.

We list below several methods by which the satisfiability of a graph may
be checked –

1. If a graph is finite and small (fewer than 6 hyperedges), we can sat-
check it by passing it to a graph satchecker. Such a satchecker can be
found in the mhgraph_pysat_satcheck function in the sat.py module.

2. If a graph is finite but not too small (7 to 20 hyperedges), we can
decompose it using local rewriting at the min-degree vertex. For this,
we use the decompose function found in the graph_rewrite.py module.

3. If a graph is finite and big (20+ hyperedges), then we can reduce
it to a smaller graph by passing it to the make_tree function in the
operations.py module.

89

4. Lastly, if a graph is infinite, we have to work out its satisfiability sta-
tus manually using reduction rules. Reduction rules themselves can
be generated by the local_rewrite function in the graph_rewrite.py

module.

Presented in Figure 6.1 is a selection of unsatisfiable hypergraphs up to
vertex size 5. A larger list can be found in the Appendix.

6.5 Computational results concerning triangulations

In this section we check a list of common/standard hypergraphs having edges
of size exactly 3. These hypergraphs can be drawn as triangulations of var-
ious surfaces and are thus of interest when viewing graphsat from the
topological point of view.

6.5.1 Thickening of graph edges

We outline below a method to create triangulations starting with simple
graphs, such that the satisfiability status in going from the simple graph to
the triangulation remains unchanged.

The process involves a local rewrite of every simple edge ab in a graph
with the hyperedges abc ∧ acd ∧ bcd, where c and d are new vertices not
previously appearing in the graph.

For example, since ab4 is an unsatisfiable graph, we can thicken all its
edges into hyperedges to form the triangulation

ab1 ∧ a12 ∧ b12 ∧ ab3 ∧ a34 ∧ b34 ∧ ab5 ∧ a56 ∧ b56 ∧ ab7 ∧ a78 ∧ b78.

This thickening process is shown in Figure 6.2.
Similarly, thickening of the unsatisfiable graph ab2∧bc2 results in the un-

satisfiable triangulation shown in Figure 6.3. This triangulation is planar
and can therefore be embedded in any surface. Thus, every surface has an
unsatisfiable triangulation.

We also note that not all unsatisfiable triangulations are mere thickenings
of unsatisfiable simple graphs. To prove that graph satisfiability is invariant

90

Figure 6.1: A selection of known unsatisfiable looped-multi-hypergraphs.

under thickening of edges, we observe the following –

s ∧ 123 ∧ 134 ∧ 234 ∼ s ∧ 1232 (using edge-smoothing reduction rule)

∼ s ∧ 12 (using leaf vertex reduction rule)

91

Figure 6.2: Thickening of the edges of ab4 shown step-by-step.

Figure 6.3: Thickening of the edges of ab2∧bc2.

These reduction rules can be applied only because s does not have any edges
incident on vertices 3 and 4 since there vertices are newly introduced by the
thickening process.

6.5.2 Tetrahedron and prisms

The tetrahedron’s wire-frame structure, i.e. its edges form the graph K4, a
known unsatisfiable graph. The faces form the triangulation abc ∧ acd ∧ abd ∧ bcd.
Using the reduction rule from §6.2.4 gives

Tetrahedron ∼ abc ∧ ab ∪ abc ∧ ac ∪ abc ∧ bc

∼ ab ∪ ac ∪ bc

∼ > ∪ > ∪ >

= >

Thus the tetrahedron is totally satisfiable.
On the other hand the triangular prism has two possible minimal triangu-

lations –

1. The symmetric triangulation, given by

123 ∧ 125 ∧ 134 ∧ 145 ∧ 236 ∧ 256 ∧ 346 ∧ 456.

92

2. The asymmetric triangulation, given by

123 ∧ 125 ∧ 136 ∧ 145 ∧ 146 ∧ 236 ∧ 256 ∧ 456.

These triangulations are shown in Figure 6.4. Passing them to the decompose
function from the graph_rewite module tells us that both triangulations are
totally satisfiable.

(a) The symmetric
triangulation.

(b) The asymmetric
triangulation.

Figure 6.4: Minimal triangulations of a triangular prism

(python3.9) (scratch) <<prism-calculation>>

import mhgraph as mhg

import graph_rewrite as grw

prism1: mhg.MHGraph = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,4], [1,4,5],

[2,3,6], [2,5,6], [3,4,6], [4,5,6]])

grw.decompose(prism1)

prism2: mhg.MHGraph = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,6], [1,4,5],

[1,4,6], [2,3,6], [2,5,6], [4,5,6]])

grw.decompose(prism2)

Output:

(1, 2, 3)¹,(1, 2, 5)¹,(1, 3, 4)¹,(1, 4, 5)¹,(2, 3, 6)¹,(2, 5, 6)¹,(3, 4, 6)¹,(4, 5, 6)¹

is SAT

(1, 2, 3)¹,(1, 2, 5)¹,(1, 3, 6)¹,(1, 4, 5)¹,(1, 4, 6)¹,(2, 3, 6)¹,(2, 5, 6)¹,(4, 5, 6)¹

is SAT

93

6.5.3 Triangulation of a Möbius strip

A Möbius strip can be triangulated as 124 ∧ 146 ∧ 235 ∧ 245 ∧ 346 ∧ 356

(also shown in Figure 6.5). Using graph_rewrite.decompose, we conclude
that this triangulation is totally satisfiable.

Figure 6.5: Triangulation of a Möbius strip

(python3.9) (scratch) <<mobius>>

import mhgraph as mhg

import graph_rewrite as grw

mobius_strip: mhg.MHGraph = mhg.mhgraph([[1, 2, 4], [1, 4, 6], [2, 3, 5],

[2, 4, 5], [3, 4, 6], [3, 5, 6]])

grw.decompose(mobius_strip)

Output:

(1, 2, 4)¹,(1, 4, 6)¹,(2, 3, 5)¹,(2, 4, 5)¹,(3, 4, 6)¹,(3, 5, 6)¹ is SAT

6.5.4 Minimal triangulation of the real projective plane

The minimal triangulation of RP2 has six vertices and is unique up to rela-
beling of vertices. This triangulation is a classic result and is often referred
to in literature as RP2

6. It can be written as
123 ∧ 326 ∧ 461 ∧ 412 ∧ 526 ∧ 561 ∧ 153 ∧ 364 ∧ 425 ∧ 534, and is shown
in Figure 6.6. Using graph_rewrite.decompose, we conclude that this trian-
gulation is totally satisfiable.

(python3.9) (scratch) <<RP2>>

import mhgraph as mhg

import graph_rewrite as grw

94

Figure 6.6: Minimal triangulation of the real projective plane, denoted
RP2

6.

rp2: mhg.MHGraph

rp2 = mhg.mhgraph([[1, 2, 3], [3, 2, 6], [4, 6, 1], [4, 1, 2], [5, 2, 6],

[5, 6, 1], [1, 5, 3], [3, 6, 4], [4, 2, 5], [5, 3, 4]])

grw.decompose(rp2)

Output:

(1, 2, 3)¹,(3, 2, 6)¹,(4, 6, 1)¹,(4, 1, 2)¹,(5, 2, 6)¹,(5, 6, 1)¹,(1, 5, 3)¹,

(3, 6, 4)¹,(4, 2, 5)¹,(5, 3, 4)¹ is SAT

6.5.5 Minimal triangulation of a Klein bottle

A Klein bottle has six distinct 8-vertex triangulations [16]. These triangula-
tions all contain 16 distinct hyperedges and have a minimum vertex degree
of 6. These large numbers make it difficult to determine the satisfiability sta-
tus of these triangulations without committing to significant computational
resources.

Of the six distinct triangulations, we checked but one – the “242 triangu-
lation”, given by the faces
123 ∧ 372 ∧ 153 ∧ 175 ∧ 147 ∧ 162 ∧ 642 ∧ 168 ∧ 148 ∧ 248 ∧ 643

∧374 ∧ 685 ∧ 653 ∧ 825 ∧ 275.
Passing it to graph_rewrite.decompose and waiting for several hours of

computations results in the discovery that the 242 configuration is unsatisfi-
able. In fact, it is unsatisfiable even if we remove the 825 ∧ 275 subgraph!

95

The 242 triangulation and its unsatisfiable subgraph are shown in Figure
6.7 for reference.

Figure 6.7: The “242 triangulation” of a Klein bottle and its unsatisfiable
subgraph.

6.5.6 Minimal triangulation of a torus

The torus can be minimally triangulated [17] as –
126 ∧ 267 ∧ 237 ∧ 371 ∧ 674 ∧ 745 ∧ 715 ∧ 156 ∧ 412 ∧ 452 ∧ 523

∧563 ∧ 634 ∧ 431.
This triangulation is shown in Figure 6.8 and is found to be unsatisfiable

by the graph_rewrite.decompose function. In fact, it is unsatisfiable even if
we remove the 634 ∧ 431 subgraph.

Figure 6.8: Minimal triangulation of a torus and its unsatisfiable subgraph.

96

6.6 Infinite graphsat

We recall from §2.3 that V is an arbitrary countable set, edges are nonempty
sets of vertices, and graphs are nonempty multisets of edges. This definition
does not exclude edges or graphs from being of countably infinite size. A
graph with infinite edges, or edges of infinite size is an infinite graph.

We note that Cnfs, in a similar vein, can also be infinite. Infinite Cnfs
either have infinitely many clauses, or have clauses of infinite size.

The notions of assignment, satisfiability, unsatisfiability – all carry over to
infinite graphs and infinite Cnfs. The only notions that do not carry over are
the questions of computational complexity since we cannot talk of program
run-time for infinite instances of graphsat.

6.6.1 Infinitely many disconnected loops

The graph 1 ∧ 2 ∧ 3 ∧ . . . is a graph made of countably infinite discon-
nected self-loops. This graph is totally satisfiable because every connected
component of it is.

6.6.2 Uniform infinite trees

For examples of totally satisfiable infinite graphs that are connected, we
consider a family of tree graphs. For positive integer n, let Tn denote an
infinite tree graph with each vertex being connected to exactly n different
vertices via edges of size 2. These are also sometimes referred to in the
literature as infinite trees of uniform degree n.

Each Tn is in fact totally satisfiable since we proved in §3.2 that every tree
is totally satisfiable (and since the proof of Theorem 1 did not depend on the
finiteness of the graph.

Another intuitive way to see that T2, for example, is totally satisfiable
is that (at the level of Cnfs) each vertex can be used to satisfy its adjacent
clause (see Figure 6.9). This results in a chain of assignments and each clause
is satisfied in a style reminiscent of Hilbert’s famous infinite hotel.

97

(a) T2 (the infinite line graph)
can be satisfied by vertex
assignments shown using blue
arrows.

(b) The infinite ray graph is
similarly totally satisfiable.

(c) The infinite ray graph with a looped on the tail is
similarly totally satisfiable.

Figure 6.9: Infinite line and ray graphs are totally satisfiable using vertex
assignment. Each edge is satisfied by a unique vertex.

6.6.3 Infinite ray graph

Proof by demonstrating a vertex assignment also for other infinite graphs.
We should keep in mind that a valid vertex assignment can only help us
remove a single adjacent edge (or hyperedge) per vertex. Also, the existence
of a vertex assignment implies that the graph in question is totally satisfiable,
but its nonexistence does not prove that the graph is unsatisfiable.

We use this technique to argue that the infinite ray graph with a looped
tail (see Figure 6.9) is totally satisfiable. At the level of Cnfs, we can see
that the tail vertex can be used to satisfy the loop. The vertex next to the
loop satisfies the last edge, the vertex after that satisfies that last-but-one
edge, and so on. This assignment is shown in the figure using arrows. This
proves that the infinite ray as well as the infinite ray with looped tail are
both totally satisfiable graphs.

6.6.4 Bi-infinite strip

We next consider a thickened version of T2 made of hyperedges, as shown
in Figure 6.10. We call this is bi-infinite strip and claim that it is totally
satisfiable. The assignment that satisfies a given Cnf in this graph can be
derived by using the arrows shown in the figure. Similarly, the mono-infinite

98

strip shown in Figure 6.10 is also totally satisfiable by the vertex assignment
shown in the figure.

(a) The bi-infinite strip is
totally satisfiable using the
vertex assignments shown using
blue arrows.

(b) The mono-infinite strip is
similarly totally satisfiable.

(c) This triangulation is formed by taking a triangular
uniform plane tiling and removing alternate tiles. It is
totally satisfiable using the vertex assignments shown.

Figure 6.10: Triangulations having vertex-assignments that use a single
vertex to satisfy each hyperedge are totally satisfiable.

6.6.5 Plane tiling with missing alternate tiles

Lastly, we consider the tiling of the plane with alternate triangles and holes
as shown in Figure 6.10. This triangulation can be satisfied by the vertex
assignment shown in the same figure.

99

6.6.6 Compactness theorem and infinite graphsat

A graph is totally satisfiable if and only if every Cnf in it is satisfiable. The
condition for every Cnf being satisfiable can itself be translated into a large
Cnf if we allow the introduction of new variables.

For example, consider the single-edge graph ab. There is a set of 4 Cnfs in
the set ab, and by relabeling the vertices, we can write γ(ab) = σ

(
(a1∨b1)∧

(a2 ∨ b2) ∧ (a3 ∨ b3) ∧ (a4 ∨ b4)
)
. We call this translation map from Graphs

to Cnfs τ (short for translation).
We use this map τ to change the total-satisfiability question of a graph g

from a universal quantification over all Cnfs in g to an existential quantifica-
tion over all truth-assignments for the Cnf τ (g). This change to existential
quantification allows us to apply the Compactness Theorem.

In mathematical logic, the Compactness Theorem states that a set of first-
order sentences has a model if and only if every finite subset of it has a model.
In the context of graphsat, this means that an infinite graph is totally
satisfiable if and only if every finite subgraph of it is totally satisfiable. This
means we can always restrict out attention to studying only finite graphs. It
also means that any unsatisfiable infinite graph must have an unsatisfiable
finite subgraph.

Note of acknowledgment: The author wishes to thank Prof.s Anush
Tserunyan and Yuliy Baryshnikov for pointing out this argument using the
Compactness Theorem in the case of Cnfs.

6.7 Computational logistics

A computational procedure for finding all unsatisfiable looped-multi-hypergraphs
can be carried out as follows —

Step 1. Start with all looped-multi-hypergraphs sorted from smallest to
largest. This can be done by calling nauty from inside SageMath. We
use nauty to generate all graphs with the following properties inside a
specified vertex range –

• the graph must be connected.

• total number of vertices must lie within specified range.

100

• edge sizes can be 1 (loops), 2 (simple edges), or 3 (hyperedges).

• we disallow edges of size 4 in order to keep things simple.

• we specify that the minimum vertex degree of the graph should
be 2 (since leaf vertices are known to be reducible).

• we allow an edge of size k to only have multiplicity less than 2k.

Step 2. Pick a graph and apply all known reduction rules to it.

Step 3. Sat-check the irreducible part of the graph left over from Step 2
using brute-force strategy.

Step 4. If totally satisfiable, then pick the next graph and go back to Step
2.

Step 5. If unsatisfiable, then add the irreducible part to the list of known
“minimal criminals”.

While this procedure allows us to search for small unsatisfiable graphs, it
is clear that we have to contend with an exponential blowup in the number
of graphs as well as an exponential blowup in the number of Cnfs that need
to be sat-checked as we keep increasing the vertex range. Table 6.4 tabulates
the number of graphs for different vertex ranges.

Table 6.4: Exponential blowup in the number of graphs with increasing
vertex count.

Number of connected graphs with less than 7 vertices 143
Number of minimal unsatisfiable irreducible simple graphs 4

Number of connected graphs with less than 6 vertices 10080
Number of minimal unsatisfiable irreducible L-M-H-graphs 202

Number of connected graphs with less than 7 vertices 48,364,386
Number of minimal unsatisfiable irreducible L-M-H-graphs unknown

101

Chapter 7

Conclusion

An outcome of this work is the creation of a new graph decision problem –
graphsat. We have demonstrated that 2graphsat is in complexity class P
and has a finite obstruction set containing four simple graphs. The natural
next step of exploring 3graphsat gave rise to the local graph rewriting
theorem, which leveraged the fact that taking a union over all possible vertex-
assignments preserves the satisfiability status of a graph. Using this theorem,
we were able to generate a list of graph reduction rules and an incomplete
list of obstructions to satisfiability of multi-hypergraphs.

7.1 Key results from this work

1. Notation and grammar for using graph-theoretic language in the con-
text of Cnfs, sat, and graphsat.

2. Set of all totally satisfiable simple graphs
= Graphs forbidding {K4, butterfly graph, bow-tie graph, K1,1,3}
as topological minors.

3. Set of all totally satisfiable looped-multi-graphs = Language of 2graph-
sat decision problem
= Graphs forbidding {K4, double-loop graph, dumbbell graph, ab4}
as topological minors.

4. There is a P-time algorithm for 2graphsat.

5. A proof of the graph local rewriting theorem –

g[v] ∼ sphere(g,v)∧star(g,v)[v] =
⋃

gi hi : Graph
gi∧hi = link(g,v)

sphere(g,v)∧(gi ∨ hi)

102

6. An open-license Python package called graphsat [12] that implements
the following –

• For formulae in conjunctive normal forms (Cnfs), it implements
variables, literals, clauses, Boolean formulae, and truth-assignments.
It includes an API for reading, parsing and defining new instances.

• For graph theory, the package includes graphs with self-loops,
edge-multiplicities, hyperedges, and multi-hyperedges. It includes
an API for reading, parsing and defining new instances.

• For satisfiability of Cnfs and graphs, it contains a bruteforce al-
gorithm, an implementation that uses the open-source sat-solver
PySAT [13], and an implementation using the MiniSAT solver
[14].

• Additionally, for graph theory, the library also implements ver-
tex maps, vertex degree, homeomorphisms, homomorphisms, sub-
graphs, and isomorphisms. This allows us to encode local rewrit-
ing rules as well as parallelized grid-based searching for forbidden
structures.

• Finally, graphsat has a tree-based recursive reduction algorithm
that uses known local-rewrite rules as well as algorithms for check-
ing satisfiability invariance of proposed reduction rules.

7. A list of graph reduction rules –

• s ∧ 12n ∼ s ∧ 2bn/2c i.e. leaf edge deletion.

• s ∧ 123n ∼ s ∧ 23bn/2c i.e. leaf hyperedge deletion.

• Smoothing at degree 2 vertices, yielding graphs with fewer ver-
tices.

• Tucking in of extended fins, yielding graphs with fewer edges.

• Opening a triple-intersection vertex.

8. Distinct ways to check the satisfiability status of a graph –

• If a graph is finite and small (fewer than 6 hyperedges), then sat-
check it by passing it to a graph satchecker. Such a satchecker can
be found in the mhgraph_pysat_satcheck function in the sat.py

module.

103

https://pysathq.github.io/
http://minisat.se/

• If a graph is finite but not too small (7 to 20 hyperedges), then
decompose it using local rewriting at the min-degree vertex. One
can use the decompose function found in the graph_rewrite.py

module.

• If a graph is finite and big (20+ hyperedges), then reduce it to
a smaller graph by passing it to the make_tree function in the
operations.py module.

• Lastly, if a graph is infinite, then ascertain its satisfiability status
manually using reduction rules. Reduction rules themselves can
be generated by the local_rewrite function in the graph_rewrite.py
module.

9. An incomplete list of known unsatisfiable looped-multi-hypergraphs
(pictured in Figure 6.1 and listed in the Appendix.

7.2 Future directions

Complexity class We showed that the complexity class of 2graphsat is
P while the complexity class for 3graphsat is not known. Moreover,
the effect of local graph rewriting on 3graphsat’s complexity class
is not known. Hence a key research question that arises is whether
local rewriting preserves complexity, and whether it makes 3graphsat
easier in practice.

3graphsat vs. 3sat We have an incomplete list of unsatisfiable looped-
multi-hypergraphs. Questions that arise within this context are –
whether the number of essential sat-invariant graph reduction rules
is finite? Even if the reduction rules are not finite, are they imple-
mentable in polynomial-time. Even if they are not implementable in
polynomial time, it is possible that there is a polynomial-time check for
demonstrating that none of the reduction rules apply to a given graph.

It is also not known if the number of minimal unsatisfiable graphs under
these reduction rules is finite. So far we have found more than 200 dis-
tinct unsatisfiable and irreducible looped-multi-hypergraphs with less

104

Table 7.1: A table showing the satisfiability statuses of complete uniform
hypergraphs. Non-obvious results are shown in boldface.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 · · ·
a = 1 sat sat sat sat sat sat sat · · ·
a = 2 - sat sat unsat unsat unsat unsat · · ·
a = 3 - - sat sat unsat unsat unsat · · ·
a = 4 - - - sat sat sat unknown · · ·
a = 5 - - - - sat sat unknown · · ·
a = 6 - - - - - sat sat · · ·
a = 7 - - - - - - sat · · ·

... - - - - - - -

than 7 vertices. If the complete list is infinite, it would imply that
3graphsat is not in complexity class P.

If 3graphsat is in P, this would give us an easy P-time heuristic check
for 3sat, simplifying some 3sat cases, while not directly affecting the
complexity class of 3sat.

Complete-uniform hypergraphs Let Ka,b denote the complete a-uniform
hypergraph on b vertices. To construct Ka,b, we can start with b ver-
tices and connect all

(
ba

)
combinations with a hyperedge of size a. We

can also think of this as the (a− 1)-skeleton of a (b− 1)-simplex.

The hypergraph Ka,b’s satisfiability status is interesting because it
combines the extreme of having all possible hyperedges connected (which
can force unsatisfiability) with the extreme of each hyperedge being in-
cident on a large number of vertices (which can force satisfiability).

For example, we know that K2,4 is K4, i.e. the complete simple graph
on 4 vertices and is known to be totally satisfiable. On the other
hand, the graph K2,3 is C3 is known to be totally satisfiable. Table 7.1
summarizes the known satisfiability statuses of various Ka,b graphs.
As seen in the table, the satisfiability-status of K4,7 and K5,7 are not
known.

Random GraphSAT Both random instances of GraphSAT as well as graph
analogues of random SAT were not covered as part of this research. We
leave these questions for further inquiry in the future.

105

Generalized triangle intersection The generalized rule for n triangular
hyperedges meeting at a common free vertex is not known. We do
know the reduction rule only for n = 3 –

s ∧ 123 ∧ 124 ∧ 134 ∼ s ∧ 23 ∪ s ∧ 24 ∪ s ∧ 34

Reduction rules for n ≥ 4 yield massive data-tables of resulting Cnfs,
which we have so far been unable to group into a convenient set of
graphs.

106

References

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, ser. STOC ’71, Shaker Heights, Ohio, USA: ACM, 1971, pp. 151–
158.

[2] L. A. Levin, “Universal enumeration problems,” Problemy Peredači In-
formacii, vol. 9, no. 3, pp. 115–116, 1973, issn: 0555-2923.

[3] M. R. Krom, “The decision problem for a class of first-order formulas
in which all disjunctions are binary,” Mathematical Logic Quarterly,
vol. 13, no. 1-2, pp. 15–20, 1967.

[4] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” SIAM Journal on Computing, vol. 5,
no. 4, pp. 691–703, 1976.

[5] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” Information
Processing Letters, vol. 8, no. 3, pp. 121–123, 1979, issn: 0020-0190.

[6] T. Feder, “Network flow and 2-satisfiability,” Algorithmica, vol. 11,
no. 3, pp. 291–319, Mar. 1994, issn: 1432-0541.

[7] T. J. Schaefer, “The complexity of satisfiability problems,” in Proceed-
ings of the Tenth Annual ACM Symposium on Theory of Computing,
ser. STOC ’78, San Diego, California, USA: ACM, 1978, pp. 216–226.

[8] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of computer computations, Springer, 1972, pp. 85–103.

[9] N. Robertson and P. Seymour, “Graph minors I. Excluding a forest,”
Journal of Combinatorial Theory, Series B, vol. 35, no. 1, pp. 39–61,
1983, issn: 0095-8956.

107

[10] ——, “Graph minors XX. Wagner’s conjecture,” Journal of Combina-
torial Theory, Series B, vol. 92, no. 2, pp. 325–357, 2004, Special Issue
Dedicated to Professor W.T. Tutte, issn: 0095-8956.

[11] V. Karve and A. N. Hirani, “The complete set of minimal simple
graphs that support unsatisfiable 2-cnfs,” Discrete Applied Mathemat-
ics, vol. 283, pp. 123–132, 2020, issn: 0166-218X. doi: 10.1016/j.dam.
2019.12.017.

[12] ——, Github: Vaibhavkarve/graphsat, version v0.1.0, Apr. 2021. doi:
10.5281/zenodo.4662169. [Online]. Available: github.com/vaibhavkarve/
graphsat.

[13] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
doi: 10.1007/978-3-319-94144-8_26. [Online]. Available: https:

//doi.org/10.1007/978-3-319-94144-8_26.

[14] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518, isbn: 978-3-540-24605-3.

[15] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Jour-
nal of Symbolic Computation, vol. 60, pp. 94–112, 2014, issn: 0747-
7171. doi: https://doi.org/10.1016/j.jsc.2013.09.003. [Online].
Available: https://www.sciencedirect.com/science/article/pii/

S0747717113001193.

[16] D. P. Cervone, “Vertex-minimal simplicial immersions of the Klein bot-
tle in three space,” en, Geometriae Dedicata, vol. 50, no. 2, pp. 117–
141, Apr. 1994, issn: 0046-5755, 1572-9168. doi: 10.1007/BF01265307.
[Online]. Available: http://link.springer.com/10.1007/BF01265307.

[17] A. F. Möbius, “Zur theorie der polyëder und der elementarverwandtschaft,”
Gesammelte werke, vol. 2, pp. 513–560, 1886.

108

https://doi.org/10.1016/j.dam.2019.12.017
https://doi.org/10.1016/j.dam.2019.12.017
https://doi.org/10.5281/zenodo.4662169
github.com/vaibhavkarve/graphsat
github.com/vaibhavkarve/graphsat
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://www.sciencedirect.com/science/article/pii/S0747717113001193
https://doi.org/10.1007/BF01265307
http://link.springer.com/10.1007/BF01265307

Appendix: List of known unsatisfiable
hypergraphs

Presented below is a list of known unsatisfiable hypergraphs. This list was
generated using SageMath’s nauty module and then filtering for unsatisfiable
graphs.

1 (1)²

2 (1), (2), (1,2)

3 (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)

4 (1,2), (1,3), (2,3), (1,2,3), (1,2,4), (1,2,5), (3,4,5)

5 (1,2), (1,3), (1,4), (2,3), (2,4), (1,2,5), (3,4,5)

6 (1,2), (1,3), (1,4), (2,3), (2,4), (1,3,4)

7 (1,2), (1,3), (1,4), (2,3), (2,4), (1,3,5), (2,4,5)

8 (1,2)², (1,4), (1,2,4)²

9 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,3,4)

10 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,4,5), (2,3,5)

11 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,3,5), (2,4,5)

12 (1,2), (1,3), (1,4), (2,3), (1,2,4), (2,3,4)

13 (1,2), (1,3), (1,4), (2,3), (1,2,4), (1,2,5), (3,4,5)

14 (1,2), (1,3), (1,4), (2,3), (1,2,5), (1,4,5), (3,4,5)

15 (1,2), (1,3), (1,4), (2,3), (1,4,5), (2,3,5), (2,4,5)

16 (1,2), (1,3), (1,4), (2,3), (1,4,5), (2,4,5), (3,4,5)

17 (1)², (1,3)

18 (1,2)², (1,4)², (1,2,4)

19 (1,2), (1,3), (1,4)², (2,3), (2,3,4)

20 (1,2)², (1,3)², (2,3)

21 (1,2)², (1,4), (1,5), (1,4,5), (2,4,5)

22 (1,2), (1,3), (1,4), (1,5), (2,3), (2,4,5), (3,4,5)

23 (1,2), (1,3)², (2,4), (1,2,4), (2,3,4)

24 (1,2), (1,3), (1,5), (2,4), (3,5), (2,3,4), (2,4,5)

25 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,3,4)

109

26 (1), (1,3), (1,5), (1,3,5), (3,4,5)

27 (1,2), (1,3), (1,5), (2,4), (1,2,4), (2,3,5), (3,4,5)

28 (1), (1,3)², (1,3,4)

29 (1,2), (1,3), (2,4), (1,2,4), (2,3,4), (1,3,4)

30 (1,2)², (1,3), (2,4), (1,3,4), (2,3,4)

31 (1,2), (1,3), (2,4), (3,4), (1,2,3), (1,2,4)

32 (1,2), (1,3), (2,4), (3,4), (1,2,5), (1,3,4), (3,4,5)

33 (1,2), (1,3), (2,4), (3,4), (1,2,4), (1,4,5), (2,3,5)

34 (1), (1,3)², (3,4)

35 (1,2), (1,3), (1,5), (2,4), (3,4), (1,2,5), (3,4,5)

36 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,3,5), (2,4,5)

37 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,4,5), (2,3,5)

38 (1,2), (1,3), (2,4), (1,2,3), (1,2,4), (1,2,5), (3,4,5)

39 (1,2), (1,3), (2,4), (1,2,3), (1,2,5), (2,4,5), (3,4,5)

40 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,3,4), (2,3,5)

41 (1,2), (1,3), (2,3), (2,4), (3,5), (4,5), (1,4,5)

42 (1,2), (1,3), (2,4), (3,5), (4,5), (1,2,3), (1,4,5)

43 (2)², (3,5)

44 (1,2), (1,3), (2,4), (3,5), (4,5), (1,2,5), (1,3,4)

45 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,3,5), (1,4,5)

46 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,3,5), (3,4,5)

47 (2)², (2,3,5)

48 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,4,5), (2,3,5)

49 (1,2), (1,3), (2,4), (4,5), (1,2,3), (1,4,5), (3,4,5)

50 (2), (1,2), (1,3), (1,2,3), (1,3,5)

51 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (1,4,5), (2,4,5)

52 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,3,5), (2,4,5)

53 (1,2), (1,3), (2,4), (1,3,5), (1,4,5), (2,3,5), (2,4,5)

54 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (2,4,5), (3,4,5)

55 (1,2), (1,3), (4,5), (1,2,4), (1,2,5), (1,3,4), (1,3,5)

56 (1,2), (1,3), (4,5), (1,2,4), (1,3,5), (2,4,5), (3,4,5)

57 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (1,3,5), (2,4,5)

58 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (2,3,5), (2,4,5)

59 (1,2), (1,3), (4,5), (1,2,4), (1,3,4), (2,4,5), (3,4,5)

60 (1,2), (1,3), (2,4)², (1,3,4), (2,3,4)

61 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,4), (3,4,5)

110

62 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,4), (1,3,5)

63 (1,2), (1,3), (2,4), (4,5), (1,3,4), (2,3,5), (3,4,5)

64 (1,2), (1,3), (2,4), (4,5), (1,2,5), (1,3,5), (2,3,4)

65 (1,2), (1,3), (2,4), (4,5), (1,3,5), (2,3,4), (3,4,5)

66 (1,2), (1,3), (2,4), (4,5), (1,2,4), (1,3,5), (2,3,5)

67 (1,2), (1,3), (2,4), (1,2,3), (1,4,5), (2,4,5), (3,4,5)

68 (1,2), (1,3), (2,4), (1,2,3), (1,3,5), (2,3,4), (2,4,5)

69 (1,2), (1,3), (2,4), (1,2,4), (1,2,5), (1,3,4), (3,4,5)

111

	Chapter 1 Introduction
	Overview
	Overview for the non-mathematician

	Chapter 2 Definitions and notation
	Type theory annotations
	Boolean formulae
	Variables
	Literals and Booleans
	Clauses
	Conjunctive normal form (Cnf)
	Assignments
	Satisfiability of Cnfs

	Graphs
	Graphs as sets of Cnfs
	Graph satisfiability
	Graph equi-satisfiability
	Disjunction and conjunction of graphs
	Consequence of graph disjunction
	Assignments on graphs
	Parts of a graph

	Summary

	Chapter 3 2GraphSAT
	Simple Cnfs suffice
	Graph homeomorphisms preserve satisfiability status
	Totally satisfiable graph families
	Structure of graphs with two or three independent cycles
	The complete set of minimal unsatisfiable simple graphs

	Conclusion to our study of 2GraphSAT
	Connection to the Robertson-Seymour graph minor theorem
	Computational complexity of 2GraphSAT

	Chapter 4 Local rewriting in graphs
	A brief look at 3GraphSAT
	The need for local rewriting
	What is graph rewriting?
	The local rewriting theorem
	Consequences of local graph rewriting
	Implementation of local graph rewriting in code

	Chapter 5 graphsat Python package
	Overview of the package
	Introduction to cnf.py
	Definitions
	Overview of cnf.py
	Imports and dependencies

	Types and their constructor functions
	Variables
	Lits
	Bools
	Clauses
	Cnfs
	Assignments
	Helpful constants

	Basic functions
	Negation of literals
	Absolute value of literals
	Literals in a Cnf

	Functions for simplification
	Tautologically reduce clauses
	Tautologically reduce Cnfs

	Functions for assignment
	Assign to variable in a literal
	Assign to variable in a clause
	Assign to variable in a Cnf
	Assign

	Standalone script run commands
	Tangling
	Concluding remarks

	Chapter 6 3GraphSAT and computational results
	Standard graph disjunctions
	Graph reduction rules
	Deleting leaf vertices
	Smoothing edges
	Tucking edges
	Opening a triple-intersection vertex

	Minimality of unsatisfiable hypergraphs
	Computational results concerning mixed hypergraphs
	Computational results concerning triangulations
	Thickening of graph edges
	Tetrahedron and prisms
	Triangulation of a Möbius strip
	Minimal triangulation of the real projective plane
	Minimal triangulation of a Klein bottle
	Minimal triangulation of a torus

	Infinite graphsat
	Infinitely many disconnected loops
	Uniform infinite trees
	Infinite ray graph
	Bi-infinite strip
	Plane tiling with missing alternate tiles
	Compactness theorem and infinite graphsat

	Computational logistics

	Chapter 7 Conclusion
	Key results from this work
	Future directions

	References
	Appendix: List of known unsatisfiable hypergraphs

