Graphical Structure of Unsatisfiable Boolean Formulae PhD thesis defence

Vaibhav Karve Department of Mathematics University of Illinois at Urbana-Champaign

2021-04-08

Outline

Introduction

Definitions

2GraphSAT

Local Rewriting in Graphs

Reduction rules

Computational results

Conclusion

Key results

2GraphSAT

- a new graph decision problem
- invariant under graph homeomorphism (topological minoring)
- a complete (and finite) list of minimal obstructions (simple graphs)

3GraphSAT

- graph rewrite/reduction rules that preserve satisfiability
- systematic computer-aided search on looped-multi-hypergraphs
- an incomplete list of minimal obstructions
- a Python package called graphsat

Local graph rewriting theorem

$$G[v] = \operatorname{sphere}(G, v), \operatorname{star}(G, v)[v] = \bigcup_{\substack{g_i \ h_i : \operatorname{Graph} \\ g_i, h_i = \operatorname{link}(G, v)}} \operatorname{sphere}(G, v), (g_i \lor h_i)$$

CNFs

Definition (CNF)

A boolean formula is in Conjunctive Normal Form if it is a conjunction of disjunctions of variables and their negations.

For example,

$$(x_1 \text{ or } x_2 \text{ or not } x_3) \text{ and } (x_3 \text{ or } x_4) \text{ and } (\text{ not } x_4)$$

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$$

- Variable \equiv an element of a countably infinite set, i.e. x_1, x_2, \dots
- Literal \equiv a variable or its negation, i.e. $x_1, \neg x_1, x_2, \neg x_2, \dots$
- Clause \equiv a nonempty set of literals
- CNF \equiv a nonempty set of clauses

$$\{\{x_1, x_2, \neg x_3\}, \{x_3, x_4\}, \{\neg x_4\}\}$$

SAT

Definition (Boolean Satisfiability)

A CNF is satisfiable if there exists a satisfying truth-assignment. Otherwise, it is unsatisfiable.

SAT

Definition (Boolean Satisfiability)

A CNF is satisfiable if there exists a satisfying truth-assignment. Otherwise, it is unsatisfiable.

For example.

- $[x_1 := \top, x_3 := \top, x_4 := \top]$ does not satisfy $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- $[x_1 := \top, x_3 := \top, x_4 := \bot]$ satisfies $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- Therefore, $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable.

If we insist on constructing an unsatisfiable CNF —

• $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable because $[x_1 := \top, x_3 := \top, x_4 := \bot]$

Definition (Boolean Satisfiability)

A CNF is satisfiable if there exists a satisfying truth-assignment. Otherwise, it is unsatisfiable.

For example,

- $[x_1 := \top, x_3 := \top, x_4 := \top]$ does not satisfy $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- $[x_1 := \top, \ x_3 := \top, \ x_4 := \bot]$ satisfies $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- Therefore, $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable.

If we insist on constructing an unsatisfiable CNF -

- $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable because $[x_1 := \top, x_3 := \top, x_4 := \bot]$
- $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$ is satisfiable because $[x_1 := \bot, \ x_2 := \bot, \ x_3 := \top, \ x_4 := \bot]$

Definition (Boolean Satisfiability)

A CNF is satisfiable if there exists a satisfying truth-assignment. Otherwise, it is unsatisfiable.

For example,

- $[x_1 := \top, x_3 := \top, x_4 := \top]$ does not satisfy $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- $[x_1 := \top, \ x_3 := \top, \ x_4 := \bot]$ satisfies $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$
- Therefore, $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable.

If we insist on constructing an unsatisfiable CNF -

- $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable because $[x_1 := \top, \ x_3 := \top, \ x_4 := \bot]$
- $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$ is satisfiable because $[x_1 := \bot, \ x_2 := \bot, \ x_3 := \top, \ x_4 := \bot]$
- $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor x_4)$ is unsatisfiable.

SAT

History

- Stephen Cook (1971) & Leonid Levin (1973)
- First NP-complete problem

Definition (SAT decision problem)

- Instance: A boolean formula in conjunctive normal form.
- Question: Is the given formula satisfiable?
- Certificate: If yes, then the certificate is a truth assignment. If no, then there is no certificate.

It is easier to verify that a CNF is satisfiable, than to prove that it is unsatisfiable.

SAT using a computer

To verify that $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4)$ is satisfiable —

```
from cnf import cnf, Cnf
from sat import cnf_pysat_satcheck as sat
x : Cnf = cnf([[1, 2, -3], [3, 4], [-4]])
print(sat(x))
```

True

To prove that $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor x_4) \land (\neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor x_4)$ is unsatisfiable —

```
x2 : Cnf = cnf([[1, 2, -3], [3, 4], [-4], [-1, -3, 4], [-2, -3, 4]])
print(sat(x2))
```

False

Definitions 00000000

Graphs

- Vertex \equiv an element of a countably infinite set, i.e. points/nodes.
- Edge ≡ a nonempty set of vertices, i.e. loops, simple connections, hyperedges.
- Graph \equiv a nonempty set of edges, i.e. a looped-multi-hypergraph.

Examples

Graphs | CNFs

Each graph "supports" a set of CNFs. Each CNF supported on a graph has the same underlying structure.

Definition (Satisfiability of graphs)

If every CNF supported on a graph is satisfiable, then the graph itself is satisfiable. If any CNF supported on a graph is unsatisfiable, then the graph is unsatisfiable.

$$G$$
 is sat $\iff \forall (x : Cnf) \in G$, x is sat

SAT | GraphSAT

Definition (Satisfiability of graphs)

If every CNF supported on a graph is satisfiable, then the graph itself is satisfiable. If any CNF supported on a graph is unsatisfiable, then the graph is unsatisfiable.

$$G$$
 is sat $\iff \forall (x : Cnf) \in G$, x is sat

SAT decision problem

- Instance: A CNF
- Question: Is the given formula satisfiable?
- Certificate: If ves. then the certificate is a truth assignment. If not, then there is no certificate.

It is easier to verify that a CNF is satisfiable. than to prove that it is unsatisfiable.

GraphSAT decision problem

- Instance: A looped-multi-hypergraph.
- Question: Is the given graph satisfiable?
- Certificate: If not, then the certificate is an unsatisfiable CNF supported on the graph. If ves. then there is no certificate.

It is easier to verify that a graph is unsatisfiable, than to prove that it is satisfiable.

SAT | GraphSAT

2SAT
$$(x_1 \lor \neg x_2) \land (x_2 \lor x_3)$$
 P
3SAT $(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4)$ NP-complete
2GraphSAT $(v_1v_2), (v_2v_3)$ P
3GraphSAT $(v_1v_2v_3), (v_2v_3v_4)$ P??

troduction Definitions 2GraphSAT Local Rewriting in Graphs Reduction rules Computational results Conclusion References

2GraphSAT is in complexity class P

This is work that was presented in the Prelim exam.

Theorem (Polynomial time algorithm for 2GraphSAT)

Let G be a looped-multi-graph with n vertices. There exists an algorithm that can decide whether G is satisfiable in $\mathcal{O}(n)$ steps.

Proof sketch.

- G is sat ←⇒ G does not contain four specific graphs as a topological minor.
 We will sketch this on the next slide.
- 2. Searching for fixed topological minors is an $\mathcal{O}(n)$ problem.

```
»» N. Robertson and P.D. Seymour. "Graph Minors XIII. The Disjoint Paths Problem". In: Journal of Combinatorial Theory, Series B 63.1 (1995), pp. 65–110. ISSN: 0095-8956
```

3. Since we search for finitely many graphs, the algorithm still runs in $\mathcal{O}(n)$ steps.

GraphSAT is homeomorphism-invariant

Definition (Topological minors)

The following operations are allowed -

- 1. deletion of vertices
- 2. deletion of edges
- 3. smoothing of degree=2 vertices: $X, 12, 23 \mapsto X, 13$ where X has no edges incident on 1.

If we only allow operation 3., we obtain homeomorphic graphs.

GraphSAT is homeomorphism-invariant

Definition (Topological minors)

The following operations are allowed -

- 1. deletion of vertices
- 2. deletion of edges
- 3. smoothing of degree=2 vertices: $X, 12, 23 \mapsto X, 13$ where X has no edges incident on 1.

If we only allow operation 3., we obtain homeomorphic graphs.

Lemma (Invariance under homeomorphism)

 G_1 and G_2 are homeomorphic \implies G_1 and G_2 are both sat or both unsat.

Proof sketch.

- 1. WLOG G_1 is formed by a single edge-subdivision of G_2 .
- 2. For every unsatisfiable CNF supported on G_1 , construct an unsatisfiable CNF on G_2 .

$$\begin{array}{c} x \wedge (x_1 \vee x_2) \wedge (x_2 \vee x_3) \longmapsto x \\ x \wedge (x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \longmapsto x \wedge (x_1 \vee x_3) \end{array}$$

3. For every unsatisfiable CNF supported on G2, construct an unsatisfiable CNF on G1.

$$x \wedge (x_1 \vee x_3) \longmapsto x \wedge (x_1 \vee x_2) \wedge (\neg x_2 \vee x_3)$$

GraphSAT is homeomorphism-invariant

We only need to consider graphs up to homeomorphisms!

Example (Satisfiability of graph families)

- 1. Tree graphs are satisfiable.
- 2. Cycle graphs are satisfiable.
- 3. A graph is satisfiable \iff each of its connected components is satisfiable.
- 4. Graph containing an unsatisfiable subgraph is unsatisfiable.

Minimal obstructions to 2GraphSAT

Theorem (The complete set of minimal unsatisfiable simple graphs)

Theorem (The complete set of minimal unsatisfiable looped-multi-graphs)

Proof sketch.

Combinatorial enumeration of all graphs based on number of independent cycles.

- ullet 0 cycles: tree graph \implies always satisfiable. 1 cycle: cycle graph \implies always satisfiable.
- 2 cycles: we show that either this is satisfiable, or has a butterfly topological minor, or a bow-tie topological minor.
- 3 cycles: we show that it always has one of the four graphs shown above as a topological minor.
- 4 cycles: any such graph has a 3 cycle subgraph. Revert to previous case.

Analogy for understanding local graph rewriting

CNFs can be evaluated at a variable

$$x : \mathsf{CNF} = (x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_4)$$

 $x_1 : \mathsf{Variable}$

$$x[x_1] = (x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_4)[x_1]$$

$$= (x_1 \lor \neg x_2)[x_1] \land (x_2 \lor x_3)[x_1] \land (\neg x_4)[x_1]$$

$$= (\top \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_4)$$

$$= (x_2 \lor x_3) \land (\neg x_4)$$

Evaluating at a variable and its negation keeps CNF-satisfiability unchanged!

Analogy for understanding local graph rewriting

CNFs can be evaluated at a variable

$$x: \mathsf{CNF} = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_4)$$

 x_1 : Variablè

$$x[x_1] = (x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_4)[x_1]$$

$$= (x_1 \lor \neg x_2)[x_1] \land (x_2 \lor x_3)[x_1] \land (\neg x_4)[x_1]$$

$$= (\top \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_4)$$

$$= (x_2 \lor x_3) \land (\neg x_4)$$

Evaluating at a variable and its negation keeps CNF-satisfiability unchanged!

	Physics analogy	Math analogy
CNF	state of particle	a function on boolean variables
Graph	superposition of many states	a family of functions
CNF evaluated at a variable Graph evaluated at a vertex	observing a collapsed state sum over all states/paths/histories	function evaluated at a point ??

Local graph rewriting

Theorem (Local graph rewriting)

Let G be a graph and let v be a vertex of G. Evaluating G at v yields the following set of CNFs:

$$G[v] = sphere(G, v), star(G, v)[v] = \bigcup_{\substack{g_i \ h_i : Graph \ g_i, h_i = link(G, v)}} sphere(G, v), (g_i \lor h_i)$$

Local graph rewriting

Theorem (Local graph rewriting)

Let G be a graph and let v be a vertex of G. Evaluating G at v yields the following set of CNFs:

$$G[v] = sphere(G, v), star(G, v)[v] = \bigcup_{\substack{g_i \ h_i : Graph \ g_i, h_i = link(G, v)}} sphere(G, v), (g_i \lor h_i)$$

$$(345, 567, 123, 124)[1] = 345, 567, (23 \lor 24)$$

$$\sim 345, 567, (\top \cup 234)$$

$$= 345, 567, \top \cup 345, 567, 234$$

$$= 345, 567 \cup 345, 567, 234$$

$$\sim 345, 567, 234$$

Local rewriting examples

(S).(3, 4).(3, 5).(2, 3)

```
from mhgraph import mhgraph, MHGraph, vertex, Vertex
from graph rewrite import local rewrite
G: MHGraph = mhgraph([[1, 2], [1, 3], [1, 4], [1. 5]])
v : Vertex = vertex(1)
```

local rewrite(G. v. True)

```
(S).(3, 4).(3, 5).(2, 5).(2, 4)
                                     (S).(2, 5).(2, 3).(2, 4)
 0 (-S)(3.4)(3.-5)(-2.4)(-2.-5)
                                     (-S)(2.3)(2.-5)(2.-4)
 1 (-S)(-3.5)(-2.5)(-2.-4)(-3.-4)
                                     (S)(2.5)(2.3)(2.-4)
 2 (S)(2,4)(2,5)(-3,4)(-3,5)
                                     (S)(2,-5)(2,-3)(2,-4)
                                     (S)(-2.5)(-2.4)(-2.-3)
 3 (-S)(-3.4)(-3.5)(-2.5)(-2.4)
 4 (-S)(3,5)(3,-4)(-2,5)(-2,-4)
                                     (S)(-2,4)(-2,-5)(-2,-3)
 5 (S)(3.4)(2.4)(2.-5)(3.-5)
                                     (-S)(2,-5)(2,-3)(2,-4)
 6 (-S)(3.5)(2.5)(3.-4)(2.-4)
                                     (-S)(2.5)(2.3)(2.-4)
 7 (-S)(3,-5)(3,-4)(-2,-4)(-2,-5)
                                     (S)(2.3)(2.-5)(2.-4)
 8 (S)(3.4)(2.4)(3.5)(2.5)
                                     (-S)(2.4)(2.-5)(2.-3)
 9 (-8)(3.4)(3.5)(-2.5)(-2.4)
                                     (S)(-2.3)(-2.-5)(-2.-4)
10 (S)(-3,-5)(-2,-4)(-3,-4)(-2,-5)
                                     (-S)(2.5)(2.-3)(2.-4)
11 (S)(-3.4)(-2.4)(-3.-5)(-2.-5)
                                     (-S)(-2.3)(-2.-5)(-2.-4)
12 (-S)(2,5)(2,-4)(-3,5)(-3,-4)
                                     (S)(-2,3)(-2,5)(-2,-4)
13 (-S)(2,4)(-3,4)(2,-5)(-3,-5)
                                     (S)(2,4)(2,5)(2,3)
14 (-S)(3,4)(2,4)(2,-5)(3,-5)
15 (S)(-3,4)(-3,5)(-2,5)(-2,4)
16 (S)(3,5)(3,-4)(-2,5)(-2,-4)
                                     (-S)(2,4)(2,5)(2,-3)
17 (S)(-3,5)(-2,5)(-2,-4)(-3,-4)
                                     (S)(2,4)(2,3)(2,-5)
18 (S)(3,4)(3,-5)(-2,4)(-2,-5)
                                     (-S)(-2,4)(-2,-5)(-2,-3)
19 (-S)(2,4)(2,5)(-3,4)(-3,5)
                                     (-S)(-2,5)(-2,4)(-2,-3)
20 (S)(2,4)(-3,4)(2,-5)(-3,-5)
                                     (S)(-2,3)(-2,4)(-2,-5)
21 (S)(2,5)(2,-4)(-3,5)(-3,-4)
```

```
(-S)(3,4)(3,5)(-2,3)
                          (S)(3.5)(3.-4)(-2.3)
                         (-S)(3.5)(3.-4)(-2.3)
                          (S)(3.4)(3.5)(-2.3)
                          (-S)(3,-5)(3,-4)(-2,3)
                         (-S)(3,4)(2,3)(3,5)
                         (S)(2.3)(3.5)(3.-4)
                         (-S)(-3,4)(-3,5)(-2,-3)
                          (S)(3.4)(2.3)(3.5)
                         (-S)(2.3)(3.5)(3.-4)
                          (S)(3.4)(2.3)(3.-5)
                         (-S)(2.3)(3.-5)(3.-4)
                          (-8)(-3.4)(2.-3)(-3.5)
                         (-S)(2,-3)(-3,-5)(-3,-4)
(-S)(-2,5)(-2,-3)(-2,-4) (S)(-3,4)(-3,-5)(-2,-3)
(-S)(-2,-5)(-2,-3)(-2,-4) (S)(-3,5)(-3,-4)(-2,-3)
                         (S)(-3,4)(-3,5)(-2,-3)
                         (S)(-3,-5)(-3,-4)(-2,-3)
                         (-S)(2,-3)(-3,5)(-3,-4)
                         (-S)(-3,4)(2,-3)(-3,-5)
(S)(-2,3)(-2,5)(-2,4)
```

(S)(-2,3)(3,-4)(-4,-5)(-2,-5) (-S)(3,4)(-2,3)(4,-5)(-2,-5) (S)(3.4)(2.3)(4.5)(2.5) (-S)(-2.3)(3.-4)(-4.-5)(-2.-5)(S)(-4,5)(-2,5)(-3,-4)(-2,-3)(-S)(-3.4)(2.-3)(4.-5)(2.-5)(S)(2.5)(-4.5)(2.-3)(-3.-4) (S)(-4.5)(-2.3)(3.-4)(-2.5) (-S)(3.4)(2.3)(2.-5)(4.-5)(-S)(-4,-5)(-3,-4)(-2,-5)(-2,-3)(S)(2,-5)(-3,-5)(-4,-5)(-S)(2.3)(2.-5)(3.-4)(-4.-5)(S)(3.4)(2.3)(2.-5)(4.-5) (S)(2,3)(2,5)(-4,5)(3,-4) (S)(4.5)(2.5)(-3.4)(2.-3) (S)(-3,4)(2,-3)(4,-5)(2,-5)(S)(4,5)(-3,4)(-2,5)(-2,-3) (-S)(-3,-5)(-3,-4)(-2,-3)(-S)(-3,4)(4,-5)(-2,-5)(-2,-3)(S)(2,-5)(2,-3)(-4,-5)(-3,-4) (-S)(3,4)(2,3)(4,5)(2,5) (S)(3,4)(-2,3)(4,-5)(-2,-5) (-S)(-4.5)(-2.3)(3,-4)(-2.5) (-S)(-3,5)(-3,-4)(-2,-3) (-S)(2,-5)(2,-3)(-4,-5)(-3,-4) (3) (3 4) (3 5) (3 0) (3) (3 4) (4 5) (3 5) (3 0)

(S), (4, 5), (3, 4), (2, 5), (2, 3)

(S).(2, 5).(3, 5).(4, 5) (S)(4.5)(3.5)(2.5) (S)(2,-5)(3,-5)(-4,-5) (-S)(4.5)(2.5)(-3.5) (-S)(4.5)(-3.5)(-2.5) (-S)(3,5)(-4,5)(-2,5)(-8)(2.-5)(-3.-5)(-4.-5)(-S)(4,-5)(-3,-5)(-2,-5) (-S)(2.5)(3.5)(-4.5) (S)(-4,-5)(-3,-5)(-2,-5) (S)(3.5)(-4.5)(-2.5) (S)(4.-5)(-3.-5)(-2.-5) (S)(3,-5)(-4,-5)(-2,-5) (-S)(2,-5)(4,-5)(-3,-5)(S)(2,5)(-4,5)(-3,5) (S)(4,5)(2,5)(-3,5) (S)(4,5)(3,5)(-2,5) (-S)(2,-5)(3,-5)(4,-5)(-S)(2,-5)(3,-5)(-4,-5)(-S)(4,5)(2,5)(3,5) (S)(2,-5)(3,-5)(4,-5) (-S)(4.5)(3.5)(-2.5)

Aside: graph disjunction

Let G_1 and G_2 be graphs. The disjunction of G_1 and G_2 is defined to be the following set of CNFs –

$$G_1 \vee G_2 = \{x_1 \vee x_2 \mid (x_1 : \mathsf{CNF}) \in G_1, (x_2 : \mathsf{CNF}) \in G_2\}$$

Table 3: Graph disjunctions where size of h_1 + size of h_2 is 2.

a	V	a	=	$T \cup a$
a	V	b	-	ab
a	V	bc	-	abc
a	\vee	ab	-	$\top \cup ab$
ab	\vee	cd	-	abcd
ab	\vee	ac	-	$\top \cup abc$
ab	V	ab	-	$\top \cup ab$

Table 4: Graph disjunctions where size of h_1 + size of h_2 is 3.

h_1		h_2		$h_1 \lor h_2$
a	V	a^2	-	a
a	V	b^2	-	a
a	V	$(ab)^2$	=	$\top \cup a \cup ab$
a	V	(b, ab)	=	$a \cup ab$
ab	V	c^2	=	ab
ab	V	(a, c)	=	$ab \cup abc$
ab	V	a^2	-	ab
ab	V	(a, b)	=	$\top \cup ab$
ab	V	(c, ac)	=	$ab \cup abc$
ab	V	(c, ab)	=	$ab \cup abc$
ab	V	(a, cd)	=	$ab \cup abcd$
ab	V	(a, ac)	=	$\top \cup ab \cup abc$
ab	V	(a, bc)	=	$\top \cup ab \cup abc$
ab	V	(a, ab)	=	$\top \ \cup \ ab$
ab	V	(ab, cd)	=	$ab \cup abcd$
ab	V	(ab, ac)	=	$\top \cup ab \cup abc$
ab	V	$(ac)^2$	=	$\top \cup ab \cup abc$
ab	V	(ac, bc)	=	$\top \cup ab \cup abc$
ab	V	$(ab)^{2}$	=	$\top \cup ab$

Table 5: Subset-superset pairs for graph disjunctions where size of $\boldsymbol{h_1}$ + size of $\boldsymbol{h_2}$ is at most 3.

Subset		h_1		h_2		Superset
		a	V	(b, c)	\subset	(ab, ac)
ab	\subset	a	V	(a, b)	\subset	$ab \cup (a, ab)$
		a	V	(b, cd)	\subset	(ab, acd)
abc	\subset	a	V	(a, bc)	\subset	$abc \cup (a, abc)$
ab	\subset	a	V	(b, ac)	\subset	$ab \cup (ab, ac)$
		a	V	(b, bc)	\subset	(ab, abc)
$\top \cup a \cup ab$	\subset	a	V	(a, ab)	\subset	$\top \cup a \cup ab \cup (a, ab)$
		a	V	(bc, de)	\subset	(abc, ade)
		a	V	(bc, bd)	\subset	(abc, abd)
		a	V	$(bc)^2$	\subset	$(abc)^2$
acd	\subset	a	V	(ab, cd)	\subset	$acd \cup (ab, acd)$
$ab \cup abc$	\subset	a	V	(ab, bc)	\subset	$ab \cup abc \cup (ab, abc)$
$\top \cup ab \cup ac$	\subset	a	V	(ab, ac)	\subset	$\top \cup ab \cup ac \cup (ab, ac)$
		ab	V	(c, d)	\subset	(abc, abd)
		ab	V	(c, de)	\subset	(abc, abde)
abc	\subset	ab	V	(c, cd)	\subset	$abc \cup (abc, abcd)$
abc	\subset	ab	V	(c, ad)	\subset	$abc \cup (abc, abd)$
		ab	V	(cd, ef)	\subset	(abcd, abef)
		ab	V	(cd, ce)	\subset	(abcd, abce)
		ab	V	$(cd)^2$	\subset	$(abcd)^2$
abcd	\subset	ab	V	(cd, ac)	\subset	$abcd \cup (abc, abcd)$
$\top \ \cup \ abc \ \cup \ abd$	\subset	ab	V	(ac, ad)	\subset	$\top \cup abc \cup abd \cup (abc, abd)$
$\top \cup abc \cup abd$	\subset	ab	V	(ac, bd)	\subset	$\top \cup abc \cup abd \cup (abc, abd)$
abcd	\subset	ab	V	(ac, cd)	\subset	$abcd \cup (abc, abcd)$

GraphSAT strategies

Given a looped-multi-hypergraph, we wish to ascertain its satisfiability status.

Strategy: Bruteforce

For a given graph G, check very CNF x_i supported on G. For every x_i , check every truth-assignment.

$$G$$
 is sat $\iff \forall x_i \in G, x_i$ is sat.

$\begin{array}{ccc} v_1 v_2 & 4 \\ v_1 v_2 v_3 & 8 \\ (v_1 v_2 v_3), (v_1 v_3 v_4), (v_1 v_2 v_4) & 512 \\ (v_1 v_2 v_3), (v_1 v_3 v_4), (v_1 v_2 v_4), (v_3 v_4 v_5), (v_3 v_5 v_6), (v_4 v_5 v_6) & 262,144 \end{array}$	count
$(v_1v_2v_3), (v_1v_3v_4), (v_1v_2v_4)$ 512	
$(v_1 v_2 v_3), (v_1 v_3 v_4), (v_1 v_2 v_4), (v_3 v_4 v_5), (v_3 v_5 v_6), (v_4 v_5 v_6)$ 262.144	
(-1-2-3), (-1-3-4), (-1-2-4), (-3-4-3), (-3-3-0), (-4-3-0)	44

GraphSAT strategies

Strategy: Apply reduction rules

Idea: simplify the graph before subjecting it to the bruteforce strategy.

For example, assume that we are given the following reduction rule:

$$X, (v_1v_2v_3), (v_1v_2v_4) \longmapsto X, (v_2v_3v_4)$$

where X is any graph not having edges incident on the vertex v_1 .

GraphSAT strategies

Strategy: Apply reduction rules

Idea: simplify the graph before subjecting it to the bruteforce strategy.

For example, assume that we are given the following reduction rule:

$$X, (v_1v_2v_3), (v_1v_2v_4) \longmapsto X, (v_2v_3v_4)$$

where X is any graph not having edges incident on the vertex v_1 .

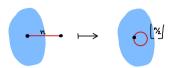
Proof sketch of reduction rule.

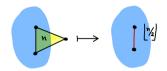
$$G[v] = \mathsf{sphere}(G, v), \mathsf{star}(G, v)[v] = \bigcup_{\substack{g_i \ h_i : \mathsf{Graph} \\ g_i, h_i = \mathsf{link}(G, v)}} \mathsf{sphere}(G, v), (g_i \lor h_i)$$

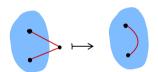
$$(X, 123, 124)[1] = X, (23 \lor 24)$$

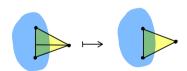
 $\sim X, (\top \cup 234)$
 $= X \cup X, 234$
 $\sim X, 234$

Graph reduction rules

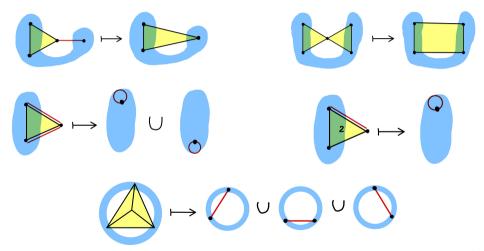








Graph reduction rules



Minimal unsatisfiable looped-multi-hypergraphs

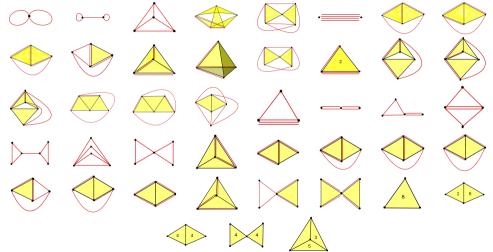
- 1. Start with all looped-multi-hypergraphs sorted smallest to largest.
- 2. Pick one and apply all known reduction rules to it.
- 3. Sat-check the reduced core of the graph.
- 4. If satisfiable, then pick the next one.
- 5. If unsatisfiable, then add to list of "minimal criminals".

Number of minimal unsatisfiable irreducible simple graphs	4
Number of connected graphs with less than 6 vertices	10080
Number of minimal unsatisfiable irreducible L-M-H-graphs	202
Number of connected graphs with less than 7 vertices	48,364,386
Number of minimal unsatisfiable irreducible L-M-H-graphs	??

Number of connected graphs with less than 7 vertices

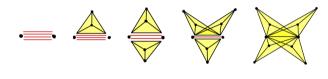
1/12

A selection of unsatisfiable looped-multi-hypergraphs



Thickening of edges

One of the reduction rules is X, $(v_1v_2v_3)$, $(v_1v_2v_4)$, $(v_2v_3v_4)$ $\longmapsto X$, (v_3v_4) , where X is a graph having no edges incident on the vertices v_1 and/or v_2 . Applying this rule in reverse yields an easy way of creating (un)satisfiable hypergraphs.

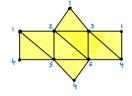


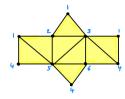
(Un) satisfiable triangulations

1. Tetrahedron is satisfiable.

(Un)satisfiable triangulations

- 1. Tetrahedron is satisfiable.
- 2. Triangulation of a triangular prism -





```
import mbgraph as mbg
import graph_rewrite as grv

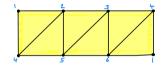
prism1: mbg.mBGraph
prism1 = mbg.mBgraph([[1,2,3], [1,2,5], [1,3,4], [1,4,5], [2,3,6], [2,5,6], [3,4,6], [4,5,6]])
grw.decompose(prism1)

prism2: mbg.MBGraph
prism2 = mbg.mbgraph([[1,2,3], [1,2,5], [1,3,6], [1,4,6], [1,4,6], [2,3,6], [2,5,6], [4,5,6]])
grw.decompose(prism2)
```

Output:

(Un)satisfiable triangulations

3. Triangulation of a Möbius strip



import mhgraph as mhg
import graph_rewrite as grw

mobius_strip: mhg.MHGraph
mobius_strip = mhg.mhgraph([[1, 2, 4], [1, 4, 6], [2, 3, 5], [2, 4, 6], [3, 4, 6], [3, 5, 6]])
grv.decompose(mobius_strip)

Output:

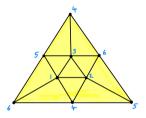
(1, 2, 4),(1, 4, 6),(2, 3, 5),(2, 4, 5),(3, 4, 6),(3, 5, 6) is SAT

luction Definitions 2GraphSAT Local Rewriting in Graphs Reduction rules Computational results Conclusion Reference

OOOOOOO OOO OOOO OOOO OOOO

(Un)satisfiable triangulations

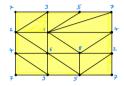
4. Triangulation of a Real projective plane (\mathbb{RP}^2)



Output:

(Un)satisfiable triangulations

5. Triangulation of a Klein bottle



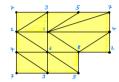
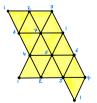
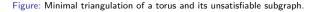


Figure: The "242 triangulation" of a Klein bottle and its unsatisfiable subgraph.

6. Triangulation of a Torus



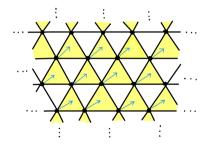


Satisfiable infinite graphs

Recall,

- Vertex \equiv an element of a countably infinite set, i.e. points/nodes.
- Edge \equiv a nonempty set of vertices, i.e. loops, simple connections, hyperedges.
- Graph \equiv a nonempty set of edges, i.e. a looped-multi-hypergraph.

Satisfiable infinite graphs



Key results

- 1. Set of all satisfiable simple graphs
 - = Graphs forbidding $\{K_4, \text{ butterfly graph, bow-tie graph, } K_{1,1,3}\}$ as topological minors.
- 2. Set of all satisfiable looped-multi-graphs
 - = Language of 2GraphSAT decision problem
 - = Graphs forbidding $\{K_4, \text{ double-loop graph}, \text{ dumbbell graph}, ab^4\}$ as topological minors.
- 3. There is a P-time algorithm for 2GraphSAT.
- 4. A list of graph reduction rules that preserve graph satisfiability.
- 5. The graph local rewriting theorem -

$$g[v] = \text{sphere}(g, v), \text{star}(g, v)[v] = \bigcup_{\substack{g_i \ h_i : \text{Graph} \\ g_i, h_i = \text{link}(g, v)}} \text{sphere}(g, v), (g_i \lor h_i)$$

- 6. An incomplete list of known unsatisfiable looped-multi-hypergraphs.
- 7. A Python package called graphsat.
 - Q: vaibhavkarve/graphsat
 - Supports Python version 3.9+, released under the GNU-GPL-v3.0 open license.
 - Functional-style, test-driven, literate programming, static type-checked.
 - Algorithms for SAT, GraphSAT, local rewriting, reduction of graphs under known rules, and searching for minimal unsatisfiable hypergraphs.

Conclusion 0000

Conjectures and future work

- 1. We showed that the complexity class of 2GraphSAT is P. The complexity class for 3GraphSAT is not known. Moreover, the effect of local graph rewriting on 3GraphSAT is not known. Does local rewriting make the problem easier, or does it leave the complexity unchanged?
- 2. We have an incomplete list of unsatisfiable looped-multi-hypergraph.
 - Conjecture 1: The number of essential sat-invariant graph reduction rules is finite.
 - Conjecture 2: Each sat-invariant reduction rule is searchable in polynomial time.
 - Conjecture 3: The number of minimal unsatisfiable graphs under these reduction rules is also finite.

If conjectures 1, 2, and 3 hold then we can conclude that 3GraphSAT is in P. This would give us an easy P-time heuristic check for 3SAT, simplifying some 3SAT cases. However, this will not affect the complexity class of 3SAT.

3. All unsatisfiable infinite graphs known so far have a finite unsatisfiable subgraph. Is there an unsatisfiable infinite graph whose every finite subgraph is satisfiable? Conjecture: No.

Conjectures and future work

4. Let $G_{a,b}$ denote the complete a-uniform hypergraph on b vertices. We can also think of this as the (a-1)-skeleton of a (b-1)-simplex. For example, we know that $G_{2,4} = K_4$ is unsatisfiable, while $G_{2,3} = C_3$ is satisfiable.

	b=1	b = 2	b = 3	b = 4	b = 5	b = 6	b = 7	
a=1	sat	sat	sat	sat	sat	sat	sat	
a = 2	-	sat	sat	unsat	unsat	unsat	unsat	
a = 3	-	-	sat	sat	unsat	unsat	unsat	
a = 4	-	-	-	sat	sat	sat	??	
a = 5	-	-	-	-	sat	sat	??	
a = 6	-	-	-	-	-	sat	sat	
a = 7	-	-	-	-	-	-	sat	
	_	_	_	_	_	_	_	

5. The generalized rule for n triangular hyperedges meeting at a common free vertex is not known. We know the reduction rule only for n = 3.

$$X$$
, 123, 124, 134 $\longmapsto X$, 23 \cup X , 24 \cup X , 34

6. We have not explored random instances of GraphSAT, or graph analogues of random SAT.

Acknowledgments

	Anil Hirani	\wedge	Nathan Dunfield	\wedge	Anush Tserunyan
\wedge	UIUC Campus Research Board	\wedge	Yuliy Baryshnikov	\wedge	David G. Bourgin family
\wedge	University of Illinois at Urbana-Champaign	\wedge	Patryk Szuta	\wedge	Illinois Geometry Lab
\wedge	Department of Mathamatics	\wedge	mem.math.illinois.edu	\wedge	Jennifer McNeilly
\wedge	Merit Program for Emerging Scholars	\wedge	Richard Sowers	\wedge	Philipp Hieronymi
\wedge	IISER-Kolkata	\wedge	Richard Laugesen	\wedge	Pranay Goel
\wedge	Saugata Bandyopadhyay	\wedge	Derrek	\wedge	Simone
\wedge	Emily	\wedge	Ravi	\wedge	Ciaran
\wedge	Sungwoo	\wedge	Rishabh	\wedge	Neelotpal
\wedge	Madhura	\wedge	Vivek	\wedge	Mohit
\wedge	Akshita	\wedge	Emacs	\wedge	Org-mode
\wedge	T _E X	\wedge	latex	\wedge	Python
\wedge	coffee	\wedge	¬ SARS-Cov-2	\wedge	Shreya
\wedge	Shekhar	\wedge	Madhavi	\wedge	Suresh
\wedge	Anupama	\wedge	Sanjay	\wedge	Sukanya

References

- [1] Niklas Eén and Niklas Sörensson. "An Extensible SAT-solver". In: Theory and Applications of Satisfiability Testing. Ed. by Enrico Giunchiglia and Armando Tacchella. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–518. ISBN: 978-3-540-24605-3.
- [2] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. "PySAT: A Python Toolkit for Prototyping with SAT Oracles". In: SAT. 2018, pp. 428–437. DOI: 10.1007/978-3-319-94144-8_26. URL: https://doi.org/10.1007/978-3-319-94144-8_26.
- [3] Vaibhav Karve and Anil N. Hirani. *GitHub: vaibhavkarve/graphsat*. Version v0.1.0. Apr. 2021. DOI: 10.5281/zenodo.4662169. URL: github.com/vaibhavkarve/graphsat.
- [4] Vaibhav Karve and Anil N. Hirani. "The complete set of minimal simple graphs that support unsatisfiable 2-CNFs". In: Discrete Applied Mathematics 283 (2020), pp. 123–132. ISSN: 0166-218X. DOI: 10.1016/j.dam.2019.12.017.
- [5] N. Robertson and P.D. Seymour. "Graph Minors XIII. The Disjoint Paths Problem". In: Journal of Combinatorial Theory, Series B 63.1 (1995), pp. 65–110. ISSN: 0095-8956.
- [6] Neil Robertson and P.D. Seymour. "Graph minors I. Excluding a forest". In: Journal of Combinatorial Theory, Series B 35.1 (1983), pp. 39–61. ISSN: 0095-8956.
- [7] Neil Robertson and P.D. Seymour. "Graph Minors XX. Wagner's conjecture". In: Journal of Combinatorial Theory, Series B 92.2 (2004). Special Issue Dedicated to Professor W.T. Tutte, pp. 325–357. ISSN: 0095-8956.

URLs

General notes on GraphSAT A copy of the thesis A copy of these slides Code repository vaibhavkarve.github.io/satisfiability vaibhavkarve.github.io/satisfiability/thesis.pdf vaibhavkarve.github.io/satisfiability/slides.pdf github.com/vaibhavkarve/graphsat

