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Key results

2GraphSAT
• a new graph decision problem
• invariant under graph homeomorphism (topological minoring)
• a complete (and finite) list of minimal obstructions (simple graphs)

3GraphSAT
• graph rewrite/reduction rules that preserve satisfiability
• systematic computer-aided search on looped-multi-hypergraphs
• an incomplete list of minimal obstructions
• a Python package called graphsat

Local graph rewriting theorem

G[v ] = sphere(G, v), star(G, v)[v ] =
⋃

gi hi : Graph
gi ,hi = link(G,v)

sphere(G, v), (gi ∨ hi )
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CNFs

Definition (CNF)
A boolean formula is in Conjunctive Normal Form if it is a conjunction of disjunctions of variables and their
negations.

For example,
(x1 or x2 or not x3) and (x3 or x4) and ( not x4)

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4)

• Variable ≡ an element of a countably infinite set, i.e. x1, x2, . . .

• Literal ≡ a variable or its negation, i.e. x1,¬x1, x2,¬x2, . . .

• Clause ≡ a nonempty set of literals
• CNF ≡ a nonempty set of clauses{

{x1, x2,¬x3}, {x3, x4}, {¬x4}
}
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SAT

Definition (Boolean Satisfiability)
A CNF is satisfiable if there exists a satisfying truth-assignment. Otherwise, it is unsatisfiable.

For example,
• [x1 := >, x3 := >, x4 := >] does not satisfy (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4)

• [x1 := >, x3 := >, x4 := ⊥] satisfies (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4)

• Therefore, (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) is satisfiable.

If we insist on constructing an unsatisfiable CNF —
• (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) is satisfiable because [x1 := >, x3 := >, x4 := ⊥]

• (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4) is satisfiable because
[x1 := ⊥, x2 := ⊥, x3 := >, x4 := ⊥]

• (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ x4) is unsatisfiable.
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SAT

History
• Stephen Cook (1971) & Leonid Levin (1973)
• First NP-complete problem

Definition (SAT decision problem)
• Instance: A boolean formula in conjunctive normal form.
• Question: Is the given formula satisfiable?
• Certificate: If yes, then the certificate is a truth assignment. If no, then there is no certificate.

It is easier to verify that a CNF is satisfiable, than to prove that it is unsatisfiable.
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SAT using a computer
To verify that (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) is satisfiable —

from cnf import cnf, Cnf
from sat import cnf_pysat_satcheck as sat

x : Cnf = cnf([[1, 2, -3], [3, 4], [-4]])
print(sat(x))

True

To prove that (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ x4) ∧ (¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ x4) is unsatisfiable —

x2 : Cnf = cnf([[1, 2, -3], [3, 4], [-4], [-1, -3, 4], [-2, -3, 4]])
print(sat(x2))

False
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Graphs
• Vertex ≡ an element of a countably infinite set, i.e. points/nodes.
• Edge ≡ a nonempty set of vertices, i.e. loops, simple connections, hyperedges.
• Graph ≡ a nonempty set of edges, i.e. a looped-multi-hypergraph.

Examples
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Graphs | CNFs

Each graph “supports” a set of CNFs. Each CNF supported on a graph has the same underlying structure.

(v1v2v3), (v3v4), (v4) ←→

1. (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x4)

2. (x1 ∨ x2 ∨¬x3) ∧ (x3 ∨ x4) ∧ (x4)

3. (x1 ∨¬x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x4)
...

64. (¬x1∨¬x2∨¬x3)∧ (¬x3∨¬x4)∧ (¬x4)

Definition (Satisfiability of graphs)
If every CNF supported on a graph is satisfiable, then the graph itself is satisfiable. If any CNF supported on a
graph is unsatisfiable, then the graph is unsatisfiable.

G is sat ⇐⇒ ∀ (x : Cnf) ∈ G, x is sat
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SAT | GraphSAT

Definition (Satisfiability of graphs)
If every CNF supported on a graph is satisfiable, then the graph itself is satisfiable. If any CNF supported on a
graph is unsatisfiable, then the graph is unsatisfiable.

G is sat ⇐⇒ ∀ (x : Cnf) ∈ G, x is sat

SAT decision problem
• Instance: A CNF.
• Question: Is the given formula satisfiable?
• Certificate: If yes, then the certificate is a

truth assignment.
If not, then there is no certificate.

It is easier to verify that a CNF is satisfiable, than
to prove that it is unsatisfiable.

GraphSAT decision problem
• Instance: A looped-multi-hypergraph.
• Question: Is the given graph satisfiable?
• Certificate: If not, then the certificate is an

unsatisfiable CNF supported on the graph.
If yes, then there is no certificate.

It is easier to verify that a graph is unsatisfiable,
than to prove that it is satisfiable.
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SAT | GraphSAT

2SAT (x1 ∨ ¬x2) ∧ (x2 ∨ x3) P
3SAT (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) NP-complete

2GraphSAT (v1v2), (v2v3) P
3GraphSAT (v1v2v3), (v2v3v4) ??
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2GraphSAT is in complexity class P
This is work that was presented in the Prelim exam.

Theorem (Polynomial time algorithm for 2GraphSAT)
Let G be a looped-multi-graph with n vertices. There exists an algorithm that can decide whether G is
satisfiable in O(n) steps.

Proof sketch.
1. G is sat ⇐⇒ G does not contain four specific graphs as a topological minor.

We will sketch this on the next slide.

2. Searching for fixed topological minors is an O(n) problem.
»» N. Robertson and P.D. Seymour. “Graph Minors XIII. The Disjoint Paths Problem”. In: Journal of Combinatorial Theory, Series B 63.1
(1995), pp. 65–110. issn: 0095-8956

3. Since we search for finitely many graphs, the algorithm still runs in O(n) steps.
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GraphSAT is homeomorphism-invariant

Definition (Topological minors)
The following operations are allowed –

1. deletion of vertices
2. deletion of edges
3. smoothing of degree=2 vertices: X , 12, 23 7−→ X , 13 where X has no edges incident on 1.

If we only allow operation 3., we obtain homeomorphic graphs.

Lemma (Invariance under homeomorphism)
G1 and G2 are homeomorphic =⇒ G1 and G2 are both sat or both unsat.

Proof sketch.
1. WLOG G1 is formed by a single edge-subdivision of G2.

2. For every unsatisfiable CNF supported on G1, construct an unsatisfiable CNF on G2.

x ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) 7−→ x

x ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3) 7−→ x ∧ (x1 ∨ x3)

3. For every unsatisfiable CNF supported on G2, construct an unsatisfiable CNF on G1.

x ∧ (x1 ∨ x3) 7−→ x ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3)
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GraphSAT is homeomorphism-invariant
We only need to consider graphs up to homeomorphisms!

Example (Satisfiability of graph families)
1. Tree graphs are satisfiable.

2. Cycle graphs are satisfiable.

3. A graph is satisfiable ⇐⇒ each of its connected components is satisfiable.

4. Graph containing an unsatisfiable subgraph is unsatisfiable.
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Minimal obstructions to 2GraphSAT

Theorem (The complete set of minimal unsatisfiable simple graphs)

Theorem (The complete set of minimal unsatisfiable looped-multi-graphs)

Proof sketch.
Combinatorial enumeration of all graphs based on number of independent cycles.

• 0 cycles: tree graph =⇒ always satisfiable. 1 cycle: cycle graph =⇒ always satisfiable.
• 2 cycles: we show that either this is satisfiable, or has a butterfly topological minor, or a bow-tie topological minor.
• 3 cycles: we show that it always has one of the four graphs shown above as a topological minor.
• 4 cycles: any such graph has a 3 cycle subgraph. Revert to previous case.
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Analogy for understanding local graph rewriting

CNFs can be evaluated at a variable
x : CNF = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x4)
x1 : Variable

x [x1] = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x4)[x1]

= (x1 ∨ ¬x2)[x1] ∧ (x2 ∨ x3)[x1] ∧ (¬x4)[x1]

= (> ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x4)

= (x2 ∨ x3) ∧ (¬x4)

Evaluating at a variable and its negation keeps CNF-satisfiability unchanged!

Physics analogy Math analogy
CNF state of particle a function on boolean variables
Graph superposition of many states a family of functions

CNF evaluated at a variable observing a collapsed state function evaluated at a point
Graph evaluated at a vertex sum over all states/paths/histories ??
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Local graph rewriting

Theorem (Local graph rewriting)
Let G be a graph and let v be a vertex of G. Evaluating G at v yields the following set of CNFs:

G[v ] = sphere(G, v), star(G, v)[v ] =
⋃

gi hi : Graph
gi ,hi = link(G,v)

sphere(G, v), (gi ∨ hi )

(345, 567, 123, 124)[1] = 345, 567, (23 ∨ 24)
∼ 345, 567, (> ∪ 234)
= 345, 567,> ∪ 345, 567, 234
= 345, 567 ∪ 345, 567, 234
∼ 345, 567, 234
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Local rewriting examples

from mhgraph import mhgraph, MHGraph, vertex, Vertex
from graph_rewrite import local_rewrite

G : MHGraph = mhgraph([[1, 2], [1, 3], [1, 4], [1, 5]])
v : Vertex = vertex(1)

local_rewrite(G, v, True)

(S),(3, 4),(3, 5),(2, 5),(2, 4) (S),(2, 5),(2, 3),(2, 4) (S),(3, 4),(3, 5),(2, 3) (S),(4, 5),(3, 4),(2, 5),(2, 3) (S),(2, 5),(3, 5),(4, 5)
-- -------------------------------- ------------------------ ------------------------ ------------------------------- ------------------------
0 (-S)(3,4)(3,-5)(-2,4)(-2,-5) (-S)(2,3)(2,-5)(2,-4) (-S)(3,4)(3,5)(-2,3) (S)(-2,3)(3,-4)(-4,-5)(-2,-5) (S)(4,5)(3,5)(2,5)
1 (-S)(-3,5)(-2,5)(-2,-4)(-3,-4) (S)(2,5)(2,3)(2,-4) (S)(3,5)(3,-4)(-2,3) (-S)(3,4)(-2,3)(4,-5)(-2,-5) (S)(2,-5)(3,-5)(-4,-5)
2 (S)(2,4)(2,5)(-3,4)(-3,5) (S)(2,-5)(2,-3)(2,-4) (-S)(3,5)(3,-4)(-2,3) (S)(3,4)(2,3)(4,5)(2,5) (-S)(4,5)(2,5)(-3,5)
3 (-S)(-3,4)(-3,5)(-2,5)(-2,4) (S)(-2,5)(-2,4)(-2,-3) (S)(3,4)(3,5)(-2,3) (-S)(-2,3)(3,-4)(-4,-5)(-2,-5) (-S)(4,5)(-3,5)(-2,5)
4 (-S)(3,5)(3,-4)(-2,5)(-2,-4) (S)(-2,4)(-2,-5)(-2,-3) (-S)(3,-5)(3,-4)(-2,3) (S)(-4,5)(-2,5)(-3,-4)(-2,-3) (-S)(3,5)(-4,5)(-2,5)
5 (S)(3,4)(2,4)(2,-5)(3,-5) (-S)(2,-5)(2,-3)(2,-4) (-S)(3,4)(2,3)(3,5) (-S)(-3,4)(2,-3)(4,-5)(2,-5) (-S)(2,-5)(-3,-5)(-4,-5)
6 (-S)(3,5)(2,5)(3,-4)(2,-4) (-S)(2,5)(2,3)(2,-4) (S)(2,3)(3,5)(3,-4) (S)(2,5)(-4,5)(2,-3)(-3,-4) (-S)(4,-5)(-3,-5)(-2,-5)
7 (-S)(3,-5)(3,-4)(-2,-4)(-2,-5) (S)(2,3)(2,-5)(2,-4) (-S)(-3,4)(-3,5)(-2,-3) (S)(-4,5)(-2,3)(3,-4)(-2,5) (-S)(2,5)(3,5)(-4,5)
8 (S)(3,4)(2,4)(3,5)(2,5) (-S)(2,4)(2,-5)(2,-3) (S)(3,4)(2,3)(3,5) (-S)(3,4)(2,3)(2,-5)(4,-5) (S)(-4,-5)(-3,-5)(-2,-5)
9 (-S)(3,4)(3,5)(-2,5)(-2,4) (S)(-2,3)(-2,-5)(-2,-4) (-S)(2,3)(3,5)(3,-4) (-S)(-4,-5)(-3,-4)(-2,-5)(-2,-3) (S)(2,-5)(-3,-5)(-4,-5)

10 (S)(-3,-5)(-2,-4)(-3,-4)(-2,-5) (-S)(2,5)(2,-3)(2,-4) (S)(3,4)(2,3)(3,-5) (-S)(2,3)(2,-5)(3,-4)(-4,-5) (S)(3,5)(-4,5)(-2,5)
11 (S)(-3,4)(-2,4)(-3,-5)(-2,-5) (-S)(-2,3)(-2,-5)(-2,-4) (-S)(2,3)(3,-5)(3,-4) (S)(3,4)(2,3)(2,-5)(4,-5) (S)(4,-5)(-3,-5)(-2,-5)
12 (-S)(2,5)(2,-4)(-3,5)(-3,-4) (S)(-2,3)(-2,5)(-2,-4) (-S)(-3,4)(2,-3)(-3,5) (S)(2,3)(2,5)(-4,5)(3,-4) (S)(3,-5)(-4,-5)(-2,-5)
13 (-S)(2,4)(-3,4)(2,-5)(-3,-5) (S)(2,4)(2,5)(2,3) (-S)(2,-3)(-3,-5)(-3,-4) (S)(4,5)(2,5)(-3,4)(2,-3) (-S)(2,-5)(4,-5)(-3,-5)
14 (-S)(3,4)(2,4)(2,-5)(3,-5) (-S)(-2,5)(-2,-3)(-2,-4) (S)(-3,4)(-3,-5)(-2,-3) (S)(-3,4)(2,-3)(4,-5)(2,-5) (S)(2,5)(-4,5)(-3,5)
15 (S)(-3,4)(-3,5)(-2,5)(-2,4) (-S)(-2,-5)(-2,-3)(-2,-4) (S)(-3,5)(-3,-4)(-2,-3) (S)(4,5)(-3,4)(-2,5)(-2,-3) (S)(4,5)(2,5)(-3,5)
16 (S)(3,5)(3,-4)(-2,5)(-2,-4) (-S)(2,4)(2,5)(2,-3) (-S)(-3,-5)(-3,-4)(-2,-3) (-S)(-3,4)(4,-5)(-2,-5)(-2,-3) (S)(4,5)(3,5)(-2,5)
17 (S)(-3,5)(-2,5)(-2,-4)(-3,-4) (S)(2,4)(2,3)(2,-5) (S)(-3,4)(-3,5)(-2,-3) (S)(2,-5)(2,-3)(-4,-5)(-3,-4) (-S)(2,-5)(3,-5)(4,-5)
18 (S)(3,4)(3,-5)(-2,4)(-2,-5) (-S)(-2,4)(-2,-5)(-2,-3) (S)(-3,-5)(-3,-4)(-2,-3) (-S)(3,4)(2,3)(4,5)(2,5) (-S)(2,-5)(3,-5)(-4,-5)
19 (-S)(2,4)(2,5)(-3,4)(-3,5) (-S)(-2,5)(-2,4)(-2,-3) (-S)(2,-3)(-3,5)(-3,-4) (S)(3,4)(-2,3)(4,-5)(-2,-5) (-S)(4,5)(2,5)(3,5)
20 (S)(2,4)(-3,4)(2,-5)(-3,-5) (S)(-2,3)(-2,4)(-2,-5) (-S)(-3,4)(2,-3)(-3,-5) (-S)(-4,5)(-2,3)(3,-4)(-2,5) (S)(2,-5)(3,-5)(4,-5)
21 (S)(2,5)(2,-4)(-3,5)(-3,-4) (S)(-2,3)(-2,5)(-2,4) (-S)(-3,5)(-3,-4)(-2,-3) (-S)(2,-5)(2,-3)(-4,-5)(-3,-4) (-S)(4,5)(3,5)(-2,5)
22 (S)(2,-4)(2,-5)(3,-5)(3,-4) (-S)(2,4)(2,3)(2,-5) (-S)(-3,4)(-3,-5)(-2,-3) (S)(-3,4)(4,-5)(-2,-5)(-2,-3) (S)(3,-5)(4,-5)(-2,-5)
23 (-S)(2,-4)(2,-5)(-3,-5)(-3,-4) (S)(2,4)(2,5)(2,-3) (S)(2,-3)(-3,-5)(-3,-4) (-S)(3,4)(4,5)(-2,3)(-2,5) (-S)(-4,5)(-3,5)(-2,5)
24 (S)(3,4)(3,5)(-2,5)(-2,4) (S)(-2,5)(-2,-3)(-2,-4) (S)(-3,4)(2,-3)(-3,5) (-S)(4,5)(-3,4)(-2,5)(-2,-3) (S)(2,-5)(4,-5)(-3,-5)
25 (-S)(3,4)(2,4)(3,5)(2,5) (S)(-2,-5)(-2,-4)(-2,-3) (S)(3,-5)(3,-4)(-2,3) (-S)(4,5)(2,5)(-3,4)(2,-3) (-S)(2,5)(-4,5)(-3,5)
26 (-S)(-3,4)(-2,4)(-3,-5)(-2,-5) (-S)(2,4)(2,5)(2,3) (-S)(3,4)(3,-5)(-2,3) (S)(2,3)(2,-5)(3,-4)(-4,-5) (-S)(3,-5)(-4,-5)(-2,-5)
27 (S)(3,-5)(3,-4)(-2,-4)(-2,-5) (S)(2,5)(2,-3)(2,-4) (-S)(3,4)(2,3)(3,-5) (-S)(2,3)(2,5)(-4,5)(3,-4) (-S)(-4,-5)(-3,-5)(-2,-5)
28 (S)(2,-4)(2,-5)(-3,-5)(-3,-4) (-S)(-2,3)(-2,5)(-2,-4) (S)(2,3)(3,-5)(3,-4) (S)(-4,-5)(-3,-4)(-2,-5)(-2,-3) (S)(2,5)(3,5)(-4,5)
29 (-S)(-3,-5)(-2,-4)(-3,-4)(-2,-5) (S)(2,4)(2,-5)(2,-3) (S)(3,4)(3,-5)(-2,3) (-S)(2,5)(-4,5)(2,-3)(-3,-4) (S)(4,5)(-3,5)(-2,5)
30 (-S)(2,-4)(2,-5)(3,-5)(3,-4) (-S)(-2,3)(-2,5)(-2,4) (S)(2,-3)(-3,5)(-3,-4) (-S)(-4,5)(-2,5)(-3,-4)(-2,-3) (S)(-4,5)(-3,5)(-2,5)
31 (S)(3,5)(2,5)(3,-4)(2,-4) (-S)(-2,3)(-2,4)(-2,-5) (S)(-3,4)(2,-3)(-3,-5) (S)(3,4)(4,5)(-2,3)(-2,5) (-S)(3,-5)(4,-5)(-2,-5)
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Aside: graph disjunction
Let G1 and G2 be graphs. The disjunction of G1 and G2 is defined to be the following set of CNFs –

G1 ∨ G2 = {x1 ∨ x2 | (x1 : CNF) ∈ G1, (x2 : CNF) ∈ G2}
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GraphSAT strategies
Given a looped-multi-hypergraph, we wish to ascertain its satisfiability status.

Strategy: Bruteforce
For a given graph G, check very CNF xi supported on G. For every xi , check every truth-assignment.

G is sat ⇐⇒ ∀xi ∈ G, xi is sat.

G CNF count
v1v2 4
v1v2v3 8
(v1v2v3), (v1v3v4), (v1v2v4) 512
(v1v2v3), (v1v3v4), (v1v2v4), (v3v4v5), (v3v5v6), (v4v5v6) 262,144
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GraphSAT strategies

Strategy: Apply reduction rules
Idea: simplify the graph before subjecting it to the bruteforce strategy.

For example, assume that we are given the following reduction rule:

X , (v1v2v3), (v1v2v4) 7−→ X , (v2v3v4)

where X is any graph not having edges incident on the vertex v1.

Proof sketch of reduction rule.

G[v ] = sphere(G, v), star(G, v)[v ] =
⋃

gi hi : Graph
gi ,hi = link(G,v)

sphere(G, v), (gi ∨ hi )

(X , 123, 124)[1] = X , (23 ∨ 24)
∼ X , (> ∪ 234)
= X ∪ X , 234
∼ X , 234
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Graph reduction rules
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Graph reduction rules
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Minimal unsatisfiable looped-multi-hypergraphs

1. Start with all looped-multi-hypergraphs sorted smallest to largest.
2. Pick one and apply all known reduction rules to it.
3. Sat-check the reduced core of the graph.
4. If satisfiable, then pick the next one.
5. If unsatisfiable, then add to list of “minimal criminals”.

Number of connected graphs with less than 7 vertices 143
Number of minimal unsatisfiable irreducible simple graphs 4

Number of connected graphs with less than 6 vertices 10080
Number of minimal unsatisfiable irreducible L-M-H-graphs 202

Number of connected graphs with less than 7 vertices 48,364,386
Number of minimal unsatisfiable irreducible L-M-H-graphs ??
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A selection of unsatisfiable looped-multi-hypergraphs
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Thickening of edges
One of the reduction rules is X , (v1v2v3), (v1v2v4), (v2v3v4) 7−→ X , (v3v4),
where X is a graph having no edges incident on the vertices v1 and/or v2.
Applying this rule in reverse yields an easy way of creating (un)satisfiable hypergraphs.
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(Un)satisfiable triangulations
1. Tetrahedron is satisfiable.

2. Triangulation of a triangular prism –

import mhgraph as mhg
import graph_rewrite as grw

prism1: mhg.MHGraph
prism1 = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,4], [1,4,5], [2,3,6], [2,5,6], [3,4,6], [4,5,6]])
grw.decompose(prism1)

prism2: mhg.MHGraph
prism2 = mhg.mhgraph([[1,2,3], [1,2,5], [1,3,6], [1,4,5], [1,4,6], [2,3,6], [2,5,6], [4,5,6]])
grw.decompose(prism2)

Output:

(1, 2, 3),(1, 2, 5),(1, 3, 4),(1, 4, 5),(2, 3, 6),(2, 5, 6),(3, 4, 6),(4, 5, 6) is SAT
(1, 2, 3),(1, 2, 5),(1, 3, 6),(1, 4, 5),(1, 4, 6),(2, 3, 6),(2, 5, 6),(4, 5, 6) is SAT
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(Un)satisfiable triangulations

3. Triangulation of a Möbius strip

import mhgraph as mhg
import graph_rewrite as grw

mobius_strip: mhg.MHGraph
mobius_strip = mhg.mhgraph([[1, 2, 4], [1, 4, 6], [2, 3, 5], [2, 4, 5], [3, 4, 6], [3, 5, 6]])
grw.decompose(mobius_strip)

Output:

(1, 2, 4),(1, 4, 6),(2, 3, 5),(2, 4, 5),(3, 4, 6),(3, 5, 6) is SAT
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(Un)satisfiable triangulations

4. Triangulation of a Real projective plane (RP2)

import mhgraph as mhg
import graph_rewrite as grw

rp2: mhg.MHGraph
rp2 = mhg.mhgraph([[1, 2, 3], [3, 2, 6], [4, 6, 1], [4, 1, 2], [5, 2, 6],

[5, 6, 1], [1, 5, 3], [3, 6, 4], [4, 2, 5], [5, 3, 4]])
grw.decompose(rp2)

Output:

(1, 2, 3),(3, 2, 6),(4, 6, 1),(4, 1, 2),(5, 2, 6),(5, 6, 1),(1, 5, 3),(3, 6, 4),(4, 2, 5),(5, 3, 4) is SAT
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(Un)satisfiable triangulations
5. Triangulation of a Klein bottle

Figure: The “242 triangulation” of a Klein bottle and its unsatisfiable subgraph.

6. Triangulation of a Torus

Figure: Minimal triangulation of a torus and its unsatisfiable subgraph.
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Satisfiable infinite graphs
Recall,
• Vertex ≡ an element of a countably infinite set, i.e. points/nodes.
• Edge ≡ a nonempty set of vertices, i.e. loops, simple connections, hyperedges.
• Graph ≡ a nonempty set of edges, i.e. a looped-multi-hypergraph.
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Satisfiable infinite graphs
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Key results
1. Set of all satisfiable simple graphs

= Graphs forbidding {K4, butterfly graph, bow-tie graph, K1,1,3} as topological minors.

2. Set of all satisfiable looped-multi-graphs
= Language of 2GraphSAT decision problem
= Graphs forbidding {K4, double-loop graph, dumbbell graph, ab4} as topological minors.

3. There is a P-time algorithm for 2GraphSAT.

4. A list of graph reduction rules that preserve graph satisfiability.

5. The graph local rewriting theorem –

g [v ] = sphere(g, v), star(g, v)[v ] =
⋃

gi hi : Graph
gi ,hi = link(g,v)

sphere(g, v), (gi ∨ hi )

6. An incomplete list of known unsatisfiable looped-multi-hypergraphs.
7. A Python package called graphsat.

• Github: vaibhavkarve/graphsat
• Supports Python version 3.9+, released under the GNU-GPL-v3.0 open license.
• Functional-style, test-driven, literate programming, static type-checked.
• Algorithms for SAT, GraphSAT, local rewriting, reduction of graphs under known rules,

and searching for minimal unsatisfiable hypergraphs.

https://github.com/vaibhavkarve/graphsat
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Conjectures and future work

1. We showed that the complexity class of 2GraphSAT is P. The complexity class for 3GraphSAT is not
known. Moreover, the effect of local graph rewriting on 3GraphSAT is not known. Does local rewriting
make the problem easier, or does it leave the complexity unchanged?

2. We have an incomplete list of unsatisfiable looped-multi-hypergraph.
• Conjecture 1: The number of essential sat-invariant graph reduction rules is finite.
• Conjecture 2: Each sat-invariant reduction rule is searchable in polynomial time.
• Conjecture 3: The number of minimal unsatisfiable graphs under these reduction rules is also finite.

If conjectures 1, 2, and 3 hold then we can conclude that 3GraphSAT is in P. This would give us an easy
P-time heuristic check for 3SAT, simplifying some 3SAT cases. However, this will not affect the complexity
class of 3SAT.

3. All unsatisfiable infinite graphs known so far have a finite unsatisfiable subgraph. Is there an unsatisfiable
infinite graph whose every finite subgraph is satisfiable?
Conjecture: No.
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Conjectures and future work

4. Let Ga,b denote the complete a-uniform hypergraph on b vertices. We can also think of this as the
(a − 1)-skeleton of a (b − 1)-simplex.
For example, we know that G2,4 = K4 is unsatisfiable, while G2,3 = C3 is satisfiable.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 · · ·
a = 1 sat sat sat sat sat sat sat
a = 2 - sat sat unsat unsat unsat unsat
a = 3 - - sat sat unsat unsat unsat
a = 4 - - - sat sat sat ??
a = 5 - - - - sat sat ??
a = 6 - - - - - sat sat
a = 7 - - - - - - sat
· · · - - - - - - -

5. The generalized rule for n triangular hyperedges meeting at a common free vertex is not known. We know
the reduction rule only for n = 3.

X , 123, 124, 134 7−→ X , 23 ∪ X , 24 ∪ X , 34

6. We have not explored random instances of GraphSAT, or graph analogues of random SAT.
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