
NOTES ON LUA-5.2

VAIBHAV KARVE

These notes were last updated July 16, 2018. They are notes taken from my reading
of Lua 5.2 reference manual.

1. Introduction and Basic Concepts

(1) Lua is an extensional language.
(2) Lua is dynamically typed i.e. variables do not have types, only values do.
(3) Inline commenting in Lua is achieved by typing two hyphens: -- This is

a comment.
(4) Lua has 8 basic types:

(a) nil type is the default. It is the type of the value nil. Similar to
Nonetype in python.

(b) boolean
(c) numbers which stores double precision floating-point numbers.
(d) string
(e) function
(f) userdata for storing arbitrary C data types.
(g) thread for independent threads of execution, used to implement corou-

tines.
(h) table for associative arrays which can be indexed with any Lua value

except niland NaN.
• Tables can be heterogeneous i.e. they can contain values of all

types (except nil).
• A table with index set {1, . . . , n} for some integer n is a sequence.
• Any key with value nilis not considered a part of the table.
• Any key that is not part of a table has value nil.
• The values of a table fields can be of any type. In particular,

table field values can be functions.
• Indexing of tables follows the definition of raw equality in the

language:

a[i]==a[j] ⇐⇒ i and j are raw equal.

(5) For a table a, Lua treats a.name as syntactic sugar for a["name"].
(6) Tables, functions, threads and (full) userdata values are objects. Objects do

not contain values, they contain references to values.
(7) An error message can be generated by calling the Lua function error and

error message can be passed as a string argument to this function.
1

http://www.lua.org/manual/5.2/manual.html

2 VAIBHAV KARVE

(8) Every value in Lua can have a metatable, which is an ordinary Lua table that
defines the behavior of the original value under certain special operations.
• Behavior can be changed by setting specific fields in the metatable.
• Keys of the metatable are event names, corresponding field values are
metamethods.
• Metatable of any value can be queried by using the getmetatable

function.
• The metatable of a table can be replaced by using the setmetatable

function. Metatables of other values cannot be changed in Lua because
values of type other than table and full userdata all share a single
metatable per type.

• Each operation is identified by a string in the metatable. The key
for each operation is two underscores + the name of the operation.
Example: " add" for addition.

• The metamethod of an object for an event can be retrieved as such:
metatable(obj)[event]. Access to a metamethod results in raw
output and does not invoke other metamethods. Also, access to objects
with no metamethods results in nil.

(9) Operations controlled by metamethods:
• " add" encodes the + operation.
• " sub" encodes the - operation.
• " mul" encodes the * operation.
• " div" encodes the / operation.
• " mod" encodes the % operation.
• " pow" encodes the ^ (exponentiation) operation.
• " unm" encodes the unary - operation (for creating negative numbers).
• " concat" encodes the .. (string concatenation) operation.
• " len" encodes the # (string length) operation.
• " eq" encodes the == operation.
• " lt" encodes the < (less than) operation.
• " le" encodes the <= (less than or equal) operation. If this metamethod

is absent then Lua assumes a<=b ⇐⇒ not (b<a).
• " index" encodes the indexing in tables (the get-value function). This

is what allows one to access a value by calling a[key], where a is some
table.

• " newindex" encodes the addition of new key-value pairs to the table.
It is sort of a set-value function, allowing us to write expressions like
a[key] = blah.

• " call" encodes the operation of calling the value stored in a variable.
(10) The expression a 6= b is encoded as a ∼= b.
(11) Garbabge collection and memory management is automatic in Lua.

2. The Language

	1. Introduction and Basic Concepts
	2. The Language

