
NOTES ON LAMBDA CALCULUS

VAIBHAV KARVE

These notes were last updated September 17, 2018. They are notes taken from my reading of Haskell
Programming from First Principles by Chris Allen, Julie Moronuki. I plan on expanding these notes further
by reading the following at some unspecified time in the future:

• A tutorial introduction to the Lambda Calculus by Raúl Rojas.
• An algorithm for optimal lambda calculus reduction by John Lamping.
• Introduction to Lambda Calculus by Henk Barendregt and Erik Barendsen.
• Proofs and Types by Jean-Yves Girard, Paul Taylor and Yves Lafont.

Contents

1. Basics and definitions 1

2. Equivalences and reductions 2

3. Examples 4

1. Basics and definitions

(1) Lambda calculus has been called the smallest universal programming language of the world. It
consists of a single transformation rule (variable substitution) and a single function definition scheme.

(2) Lambda calculus is universal in that any computable function can be expressed and evaluated using
this formalism. It is equivalent to Turing machines.

(3) Lambda calculus has three basic components or lambda terms – expressions, variables and abstractions.

(4) Expressions are variable names, abstractions, or combinations of other expression. Variables have no
meaning or value, they are only names for potential inputs to functions. An abstraction is a function
– it is a lambda term that has a head (a lambda) and a body and is applied to an argument. An
argument is an input value.

(5) Expressions can be defined recursively as —

< expression > := < name > | < function > | < application >

< function > := λ < name > . < expression >

< application > := < expression >< expression >
1

2 VAIBHAV KARVE

(6) Abstractions have two parts – a head and a body. The head of the function is a λ followed by a
variable name. The body of the function is another expression. For example: λx..x2

Lambda abstractions are anonymous functions.

(7) The variable named in the head is the parameter and binds all instances of that same variable in the
body of the function. The dot (.) separates the parameters of the lambda from the function body.

2. Equivalences and reductions

(1) Alpha equivalence states that λx..x is the same as λy..y, that is, the variables x and y are not
semantically meaningful except in their role in their single expressions.

(2) Beta reduction: when applying a function to an argument, substitute the input expression for all
instances of bound variables within the body of the abstraction.

(λx.xx)3 = xx[x := 3] = 3 3

Hence, Beta reduction is the process of applying a lambda term to an argument, replacing the bound
variables with the value of the argument, and eliminating the head.

(λx.x)λy.y = x[x := (λy.y)]

= λy.y

(3) Another notation for beta reduction:

(λx.x)y = [y/x]x = y

(4) Application in lambda calculus is left-associative.

(λx.x)(λy.y)z = ((λx.x)(λy.y))z left-associativity

= (x[x := λy.y])z beta reduction step 1

= (λy.y)z beta reduction step 2

= y[y := z] beta reduction step 1

= z beta reduction step 2

(5) Variables in the body that are not bound by the head are called free variables. For example, y is a
free variable in the expression λx.xy

(λx.xy)z = xy[x := z] = zy

(6) Formally a variable < name > is free in an expression if one of the following three cases hold:
• < name > is free in < name >
• < name > is free in λ < name1 > . < exp >, such that < name >6=< name1 > and < name >

is free in < exp >.
• < name > is free in E1E2 if < name > is free in E1 or it is free in E2.

(7) Similarly, a variable < name > is bound if one of two cases hold:
• < name > is bound in λ < name1 > . < exp >, such that < name >=< name1 > or < name >

is bound in < exp >.
•
• < name > is bound in E1E2 if < name > is bound in E1 or if it is bound in E2.

(8) The same identifier can occur free and bound in the same expression. For example, y is both free
and bound in the expression (λx.xy)(λy.y).

(9) The alpha equivalence does not apply to free variables.

NOTES ON LAMBDA CALCULUS 3

(10) Currying: named after Haskell Curry is the shorthand notation of the type λxy..xy for multiple
lambda functions λx.(λy.xy).

λxy.xy 1 2 = λx.(λy.xy) 1 2

= (λy.xy)[x := 1] 2

= (λy.1y) 2

= (1y) [y := 2]

= 1 2

or by using currying we perform the same calculation in fewer steps,

λxy.xy 1 2 = (λy.xy)[x := 1] 2

= (λy.1y)2

= (1y)[y := 2]

= 1 2

(11) A lambda term is in beta normal form when one cannot beta reduce (apply lambdas to arguments)
its expressions any further. This corresponds to a fully evaluated function or fully executed program.
The identity function λx.x is in normal form.

(12) A combinator is a lambda term with no free variables. Combinators serve only to combine the
arguments that are given. The following are combinators: λx.x, λxy.x, λxyz.xz(yz) and the following
are not: λy.x, λx.xz. The point of combinators is that they can only combine the arguments they
are given, without injecting any new values or random data.

(13) A lambda term whose beta reduction never terminates is said to diverge. The lambda term omega
defined as (λx.xx)(λx.xx) diverges because

(λx.xx)(λx.xx) = (λx.xx)(λy.yy) = xx[x := λy.yy] = (λy.yy)(λy.yy).

4 VAIBHAV KARVE

3. Examples

(λxy.xy)(λz.a) 1

= (λy.(λz.a)y)1

= (λz.a)1

= a

(λa.aa)(λb.ba)c

= (λd.dd)(λb.ba)c

= (λb.ba)(λb.ba)c

= (λb.ba)(λd.da)c

= ((λd.da)a)c

= aac

(λx.λy.xyy)(λa.a)b

= (λy.(λa.a)yy)b

= (λa.a)bb

= bb

(λxyz.xz(yz))(λx.z)(λx.a)

= (λxyb.xb(yb))(λc.z)(λd.a)

= (λyb.(λc.z)b(yb))(λd.a)

= λb.(λc.z)b((λd.a)b)

= λb.z((λd.a)b)

= λb.za

(λxyz.xz(yz))(λmn.m)(λp.p)

= (λyz.(λmn.m)z(yz))(λp.p)

= λz.(λmn.m)z((λp.p)z)

= λz.(λn.z)((λp.p)z)

= λz.z

(λabc.cba)zz(λwv.w)

= (λbc.cbz)z(λwv.w)

= (λc.czz)(λwv.w)

= (λwv.w)zz

= (λv.z)z

= z

(λy.y)(λx.xx)(λz.zq)

= (λx.xx)(λz.zq)

= (λz.zq)(λz.zq)

= (λz.zq)(λx.xq)

= (λx.xq)q

= qq

(λxy.xxy)(λx.xy)(λx.xz)

= (λxy.xxy)(λa.ay)(λb.bz)

= (λy.(λa.ay)(λc.cy)y)(λb.bz)

= (λa.a(λb.bz))(λc.c(λb.bz))(λb.bz)

= (λa.a(λb.bz))(λc.c(λd.dz))(λe.ez)

= ((λc.c(λd.dz))(λb.bz))(λe.ez)

= ((λb.bz)(λd.dz))(λe.ez)

= ((λd.dz)z)(λe.ez)

= (zz)(λe.ez)

= yy(λb.bz)

	1. Basics and definitions
	2. Equivalences and reductions
	3. Examples

